首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of solid metal/liquid metal trace element partition coefficients, which are used to interpret the crystallization history of magmatic iron meteorite groups differ greatly between different research groups, using different experimental techniques. Specifically, partition coefficients measured utilizing “static” experiments which approach equilibrium cannot be reconciled with the results of “dynamic” experiments which mimic fractional crystallization. We report new tests of our “static” experimental technique and demonstrate that our methodology yields reliable equilibrium values for Ni, P and Ge partition coefficients. Partition coefficients in the Fe-Ni-S-P system are well matched by interpolation between the Fe-Ni-S and Fe-Ni-P subsystems. In contrast, the predictions of “dynamic” experiments do not agree with our measurements and, consequently, the ability of “dynamic” experiments to reproduce iron meteorite Ge vs. Ni fractionation trends successfully must be regarded as fortuitous.  相似文献   

2.
The primary fractionation process in iron meteorites is that responsible for the distribution of elements between the groups, most notably Ga and Ge, which show concentration ranges of 103 and 104 respectively. To investigate the cause of the primary fractionation, concentrations of 16 elements were converted to relative abundances by dividing the element/Ni ratio by the CI chondrite ratio. These abundances were plotted on logarithmic graphs with data for each group (except IB and IIICD) and each cluster of closely related anomalous irons averaged.Co, P, Au, As, Cu, Sb, Ge and Zn are positively correlated with Ga. For most groups (except IA, IC and IIAB) relative abundances of these elements tend to decrease from about 1 in approximately the order listed above. This is the expected order in which these elements will condense into Fe, Ni during equilibrium nebular condensation. Mean relative abundances of refractory elements in groups generally lie within a narrow range of 0.5–2, and are uncorrelated with Ga. Although the equilibrium model may be only a gross approximation, it suggests that most primary fractionation did occur during nebular condensation.The anomalous irons are essential for defining many of the primary fractionation trends. On several element-Ga graphs the displacements of the anomalous irons from the primary curves indicate that these irons experienced the same secondary fractionation process (probably fractional crystallization) that produced the trends within most groups. The anomalous irons appear to be samples from over 50 minor groups, which have similar histories to the 12 major groups.  相似文献   

3.
Published analyses of trace and minor elements in iron meteorites have been compiled and the distributions interpreted with the chemical groups defined by Wasson. When each element is plotted against Ni on log scales, groups are often clearly resolved with all the members of a group falling within the limits of sampling and analytical error on a straight line. The lines for groups IIIa,b and IVa are generally parallel with IIa,b plotting on a steeper gradient. In contrast to Ga and Qe, many elements show variations within a group which may approach that shown by all the iron meteorites. Group I members have a fairly uniform concentration of elements which are severely fractionated in the other major groups. There are also fewer correlations of elements in group I.  相似文献   

4.
5.
6.
To better understand the partitioning behavior of elements during the formation and evolution of iron meteorites, two sets of experiments were conducted at 1 atm in the Fe-Ni-P system. The first set examined the effect of P on solid metal/liquid metal partitioning behavior of 22 elements, while the other set explored the effect of the crystal structures of body-centered cubic (α)- and face-centered cubic (γ)-solid Fe alloys on partitioning behavior. Overall, the effect of P on the partition coefficients for the majority of the elements was minimal. As, Au, Ga, Ge, Ir, Os, Pt, Re, and Sb showed slightly increasing partition coefficients with increasing P-content of the metallic liquid. Co, Cu, Pd, and Sn showed constant partition coefficients. Rh, Ru, W, and Mo showed phosphorophile (P-loving) tendencies. Parameterization models were applied to solid metal/liquid metal results for 12 elements. As, Au, Pt, and Re failed to match previous parameterization models, requiring the determination of separate parameters for the Fe-Ni-S and Fe-Ni-P systems.Experiments with coexisting α and γ Fe alloy solids produced partitioning ratios close to unity, indicating that an α versus γ Fe alloy crystal structure has only a minor influence on the partitioning behaviors of the trace element studied. A simple relationship between an element’s natural crystal structure and its α/γ partitioning ratio was not observed. If an iron meteorite crystallizes from a single metallic liquid that contains both S and P, the effect of P on the distribution of elements between the crystallizing solids and the residual liquid will be minor in comparison to the effect of S. This indicates that to a first order, fractional crystallization models of the Fe-Ni-S-P system that do not take into account P are appropriate for interpreting the evolution of iron meteorites if the effects of S are appropriately included in the effort.  相似文献   

7.
Carbon has been proposed as a potential light element in planetary cores, included in models of planetary core formation, and found in meteoritic samples and minerals. To better understand the effect of C on the partitioning behavior of elements, solid/liquid partition coefficients (D = (solid metal)/(liquid metal)) were determined for 17 elements (As, Au, Co, Cr, Cu, Ga, Ge, Ir, Ni, Os, Pd, Pt, Re, Ru, Sb, Sn, and W) over a range of C contents in the Fe-Ni-C system at 1 atm. The partition coefficients for the majority of the elements increased as the C content of the liquid increased, an effect analogous to that of S for many of the elements. In contrast, three of the elements, Cr, Re, and W, were found to have anthracophile (C-loving) preferences, partitioning more strongly into the metallic liquid as the C content increased, resulting in decreases to their partition coefficients. For half of the elements examined, the prediction that partitioning in the Fe-Ni-S and Fe-Ni-C systems could be parameterized using a single set of variables was not supported. The effects of S and C on elemental partitioning behavior can be quite different; consequently, the presence of different non-metals can result in different fractionation patterns, and that uniqueness offers the opportunity to gain insight into the evolution of planetary bodies.  相似文献   

8.
Ureilite meteorites contain iron silicide minerals including suessite (Fe,Ni)3Si, hapkeite (Fe2Si) and xifengite (Fe5Si3). Despite occurring mostly in brecciated varieties presumed to be derived from the regolith of the ureilite parent asteroid, suessite has also been confirmed in one lithology of a dimict ureilite (NWA 1241). In contrast, Si-bearing Fe-metals occur in both brecciated and unbrecciated ureilites, implying that they were formed throughout the ureilite parent asteroid. We examined major, minor and trace element data of Fe-metals in seven brecciated ureilites (DaG 319, DaG 999, DaG 1000, DaG 1023, DaG 1047, EET 83309, and EET 87720) in addition to the dimict ureilite NWA 1241.In this study we show that the silicides and Si-bearing metals in ureilites have similar siderophile trace element patterns; therefore, the precursors to the silicides were indigenous to the ureilite parent body. Si-free kamacite grains in brecciated ureilites show flatter, more chondritic siderophile element patterns. They may also be derived from the interior of the ureilite parent body, but some may be of exogenous origin (impactor debris), as are rare taenite grains.On Earth, iron silicides are often formed under high-temperature and strongly reducing conditions (e.g. blast furnaces, lightning strikes). On the Moon, hapkeite (Fe2Si) and other silicides have been found in the regolith where they were formed by impact-induced space weathering. In the Stardust aerogel, iron silicides derived from comet Wild2 were also formed by an impact-related reduction process. Silicides in ureilite regolith breccias may have formed by similar processes but ureilites additionally contain abundant elemental carbon which probably acted as a reducing agent, thus larger and more abundant silicide grains were formed than in the lunar regolith or cometary material. The origin of suessite in NWA 1241 may be analogous to that of reduced lithologies in the terrestrial mantle, although a regolith origin may also be possible since this sample is shown here to be a dimict breccia.  相似文献   

9.
Total nitrogen abundances in 123 iron meteorites have been determined by inert carrier-gas fusion extraction-gas chromatography. The median value for the iron meteorites was found to be 18 ppm N. The N contents of Sulfide inclusions are greater, in nine cases out of ten, than the corresponding metallic phase. The N content of the iron meteorites is positively correlated with germanium content. The effects of terrestrial weathering and heat treatment by man are discussed in relation to the N contents measured for certain specimens. A correlation between N and cooling rates was found, with lower cooling rates associated with greater N abundances.  相似文献   

10.
The addition of two meteorites to the iron meteorite grouplet originally known as the Bellsbank trio brings the population to five, the minimum number for group status. With Ga and Ge contents in the general “II” range, the new group has been designated IIG. The members of this group have low-Ni contents in the metal and large amounts of coarse schreibersite ((Fe,NI)3P); their bulk P contents are 17-21 mg/g, the highest known in iron meteorites. Their S contents are exceptionally low, ranging from 0.2 to 2 mg/g. We report neutron-activation-analysis data for metal samples; the data generally show smooth trends on element-Au diagrams. The low Ir and high Au contents suggest formation during the late crystallization of a magma.Because on element-Au or element-Ni diagrams the IIG fields of the important taxonomic elements Ni, Ga, Ge and As are offset from those of the IIAB irons, past researchers have concluded that the IIG irons could not have formed from the same magma, and thus that the two groups originated on separate parent bodies. However, on most element-Au diagrams the IIG fields plot close to extensions of IIAB trends to higher Au concentrations.There is general agreement that immiscibility led to the formation of an upper S-rich and a lower P-rich magma in the IIAB core. We suggest that the IIG irons formed from the P-rich magma, and that schreibersite was a liquidus phase during the final stages of crystallization. The offsets in Ni and As (and possibly other elements) may result from solid-state elemental redistribution between metal and schreibersite during slow cooling. For example, it is well established that the equilibrium Ni content is >2× higher in late-formed relative to early-formed schreibersite. It is plausible that As substitutes nearly ideally for P in schreibersite at eutectic temperatures but becomes incompatible at low temperatures.[Wasson J. T., Huber, H. and Malvin, D. J. (2007) Formation of IIAB iron meteorites. Geochim. Cosmochim. Acta71, 760-781] argued that, in the most evolved IIAB irons, the amount of trapped melt was high. The high P contents of IIG irons also require high contents of trapped melt but the local geometry seems to have allowed the S-rich immiscible melt to escape as it formed. The escaping melt may have selectively depleted elements such as Au and Ge.  相似文献   

11.
Based on structural observations and the concentrations of Cr, Co, Ni, Cu, Ga, Ge, As, Sb, Re, Ir, and Au by neutron-activation analysis we have classified 14 Chinese iron meteorites. Thirteen are members of the large groups IAB, IIICD, IIIAB and IVA. Leshan is an ungrouped iron meteorite that falls within the IIE field on some element-Ni diagrams, but is distinctly outside this field on plots of Cu, W, and Ir vs. Ni; it is very similar in composition to Techado, another ungrouped iron. The high Cu content of Leshan in consistent with other evidence indicating that Cu is a valuable parameter for classifying iron meteorites. IIICD Dongling appears not to be a new meteorite, but to be paired with Nantan; Dongling was recovered about 50 km from the location of the Nantan shower. In view of the fact that Yongning is highly oxidized, we assign it to group IAB but cannot rule out IIICD. IVA-An Longchang has many characteristics of IVA irons, but has been remelted, probably in a terrestrial setting. Five irons belong to group IVA, a remarkably large number. Three are identical in composition, and we suspect that the two from Hubei, Guanghua and Huangling, are paired. Thus this set of 14 irons includes 12 independent falls.  相似文献   

12.
Here we compare new experimental studies with theoretical predictions of equilibrium iron isotopic fractionation among aqueous ferric chloride complexes (Fe(H2O)63+, FeCl(H2O)52+, FeCl2(H2O)4+, FeCl3 (H2O)3, and FeCl4-), using the Fe-Cl-H2O system as a simple, easily-modeled example of the larger variety of iron-ligand compounds, such as chlorides, sulfides, simple organic acids, and siderophores. Isotopic fractionation (56Fe/54Fe) among naturally occuring iron-bearing species at Earth surface temperatures (up to ∼3‰) is usually attributed to redox effects in the environment. However, theoretical modeling of reduced isotopic partition functions among iron-bearing species in solution also predicts fractionations of similar magnitude due to non-redox changes in speciation (i.e., ligand bond strength and coordination number). In the present study, fractionations are measured in a series of low pH ([H+] = 5 M) solutions of ferric chloride (total Fe = 0.0749 mol/L) at chlorinities ranging from 0.5 to 5.0 mol/L. Advantage is taken of the unique solubility of FeCl4- in immiscible diethyl ether to create a separate spectator phase, used to monitor changing fractionation in the aqueous solution. Δ56Feaq-eth = δ56Fe (total Fe remaining in aqueous phase)−δ56Fe (FeCl4- in ether phase) is determined for each solution via MC-ICPMS analysis.Both experiments and theoretical calculations of Δ56Feaq-eth show a downward trend with increasing chlorinity: Δ56Feaq-eth is greatest at low chlorinity, where FeCl2(H2O)4+ is the dominant species, and smallest at high chlorinity where FeCl3(H2O)3 is dominant. The experimental Δ56Feaq-eth ranges from 0.8‰ at [Cl-] = 0.5 M to 0.0‰ at [Cl-] = 5.0 M, a decrease in aqueous-ether fractionation of 0.8‰. This is very close to the theoretically predicted decreases in Δ56Feaq-eth, which range from 1.0 to 0.7‰, depending on the ab initio model.The rate of isotopic exchange and attainment of equilibrium are shown using spiked reversal experiments in conjunction with the two-phase aqueous-ether system. Equilibrium under the experimental conditions is established within 30 min.The general agreement between theoretical predictions and experimental results points to substantial equilibrium isotopic fractionation among aqueous ferric chloride complexes and a decrease in 56Fe/54Fe as the Cl-/Fe3+ ion ratio increases. The effects on isotopic fractionation shown by the modeling of this simple iron-ligand system imply that ligands present in an aqueous environment are potentially important drivers of fractionation, are indicative of possible fractionation effects due to other speciation effects (such as iron-sulfide systems or iron bonding with organic ligands), and must be considered when interpreting iron isotope fractionation in the geological record.  相似文献   

13.
The ion microprobe was used to measure Ti and Mg isotopes as well as rare earth and other trace elements in ten hibonites from the CM carbonaceous chondrites Murchison, Murray, and Cold Bokkeveld and in two hibonites and Ti-rich pyroxene from the CV chondrite Allende. In hibonites from Murchison and Murray fission track densities were also measured, as were Th and U concentrations. Eight of the hibonites, from all four meteorites, exhibit large Ti isotopic anomalies, particularly in 50Ti. Two grains from Murray have 50Ti excesses of ~ 10%. At least four nucleosynthetic components are required to account for all the Ti isotopic data. Neutron-rich nuclear statistical equilibrium nucleosynthesis is the most likely process to account for a 50Ti-rich component (with 50Ti49Ti$̆20). The ion probe Ti isotopic measurements confirm that the solar nebula was isotopically heterogeneous on a small spatial scale and argue for a chemical memory origin of the Ti isotopic anomalies which were probably carried into the solar system in the form of refractory dust grains. However, there is no experimental evidence that such interstellar grains survived the formation of the hibonites. The REE and trace element patterns of the hibonites are similar to those seen in CAIs and can be interpreted in terms of fractionation effects during condensation from a gas of solar composition, thus arguing for a solar system origin of the hibonites. Additional evidence for such an origin is provided by the PuTh ratios, which are ~ 10−4, and by the Mg isotopic compositions which are normal except for 26Mg1 due to 26Al.Only three out of ten hibonites exhibit 26Mg1, consistent with previous studies which demonstrated the paucity of 26Mg1 in hibonites. Because of the refractory nature of hibonite and the presence of large Ti isotopic effects, we conclude that a heterogeneous distribution of 26Al in the early solar system is the most likely reason. In particular, our observations of δ50Ti = 15%. and of an isochron with (26Al27Al)0 = 5 × 10−8 in the FUN inclusion HAL are evidence against both late formation and Mg redistribution to explain the lack of 26Al in hibonites.There are no obvious correlations between the Ti isotopic compositions, the presence of 26Mg1, the presence of 244Pu, and the REE and trace element patterns in individual hibonites. This indicates that the anomalous 50Ti, as well as 26A1 and 244Pu, were not co-produced in a single astrophysical source, and/or that these nuclides were introduced into the solar nebula by different carriers before being incorporated into the hibonites.  相似文献   

14.
15.
This experimental study examines the mineral/melt partitioning of Na, Ti, La, Sm, Ho, and Lu among high-Ca clinopyroxene, plagioclase, and silicate melts analogous to varying degrees of peridotite partial melting. Experiments performed at a pressure of 1.5 GPa and temperatures of 1,285 to 1,345 °C produced silicate melts saturated with high-Ca clinopyroxene, plagioclase and/or spinel, and, in one case, orthopyroxene and garnet. Partition coefficients measured in experiments in which clinopyroxene coexists with basaltic melt containing ~18 to 19 wt% Al2O3 and up to ~3 wt% Na2O are consistent with those determined experimentally in a majority of the previous studies, with values of ~0.05 for the light rare earths and of ~0.70 for the heavy rare earths. The magnitudes of clinopyroxene/melt partition coefficients for the rare earth elements correlate with pyroxene composition in these experiments, and relative compatibilities are consistent with the effects of lattice strain energy. Clinopyroxene/melt partition coefficients measured in experiments in which the melt contains ~20 wt% Al2O3 and ~4 to 8 wt% Na2O are unusually large (e.g., values for Lu of up to 1.33±0.05) and are not consistent with the dependence on pyroxene composition found in previous studies. The magnitudes of the partition coefficients measured in these experiments correlate with the degree of polymerization of the melt, rather than with crystal composition, indicating a significant melt structural influence on trace element partitioning. The ratio of non-bridging oxygens to tetrahedrally coordinated cations (NBO/T) in the melt provides a measure of this effect; melt structure has a significant influence on trace element compatibility only for values of NBO/T less than ~0.49. This result suggests that when ascending peridotite intersects the solidus at relatively low pressures (~1.5 GPa or less), the compatibility of trace elements in the residual solid varies significantly during the initial stages of partial melting in response to the changing liquid composition. It is unlikely that this effect is important at higher pressures due to the increased compatibility of SiO2, Na2O, and Al2O3 in the residual peridotite, and correspondingly larger values of NBO/T for small degree partial melts.Editorial responsibility: T.L. Grove  相似文献   

16.
Pb isotopic compositions and U-Pb abundances were determined in the metal phase of six iron meteorites: Canyon Diablo IA, Toluca IA, Odessa IA, Youndegin IA, Deport IA and Mundrabilla An. Prior to complete dissolution, samples were subjected to a series of leachings and partial dissolutions. Isotopic compositions and abundances of the etched Pb indicate a contamination by terrestrial Pb which is attributable to previous cutting of the meteorite. Pb isotopic compositions measured in the decontaminated samples are identical within 0.2% and essentially confirm the primordial Pb value defined by Tatsumotoet al. (1973). These data invalidate more radiogenic Pb isotopic compositions published for iron meteorites, which are the result of terrestrial Pb contamination introduced mainly by analytical procedure. Our results support the idea of a solar nebula which was isotopically homogeneous for Pb 4.55 Ga ago. The new upper limit for U-abundance in iron meteorites, 0.001 ppb, is in agreement with its expected thermodynamic solubility in the metal phase.  相似文献   

17.
Calculation of sulfur isotope fractionation in sulfides   总被引:3,自引:0,他引:3  
The increment method has been successfully applied to calculate thermodynamic isotope fractionation factors of oxygen in silicates, oxides, carbonates, and sulfates. In this paper, we modified the increment method to calculate thermodynamic isotope fractionation factors of sulfur in sulfides, based on chemical features of sulfur-metal bonds and crystal features of sulfide minerals. To approximate the bond strength of sulfides, a new constant, known as the Madelung constant, was introduced. The increment method was then extended to calculate the reduced partition function ratios of sphalerite, chalcopyrite, galena, pyrrhotite, greenockite, bornite, cubanite, sulvanite, and violarite, as well as the isotope fractionation factors between them over the temperature range from 0 to 1000 °C. The order of 34S enrichment in these nine minerals is pyrrhotite > greenockite > sphalerite > chalcopyrite > cubanite > sulvanite > bornite > violarite > galena. Our improved method constitutes another model for calculating the thermodynamic isotope fractionation factors of sulfur in sulfides of geochemical interest.  相似文献   

18.
The submarine volcanoes, located in the southern part of Andaman Sea, north eastern Indian Ocean, result from the subduction of the Indo-Australian Plate beneath the Southeast Asian Plate and represent one of the less studied submarine volcanism among the global arc systems. The present study provides new petrological and geochemical data for the recovered rocks from the submarine volcanoes and documents the petrogenetic evolution of Andaman arc system. Geochemical attributes classify the studied samples as basaltic andesite, andesite, dacite to rhyodacite reflecting sub-alkaline, intermediate to acidic composition of the magma. Petrographic studies of the basaltic andesites and andesites show plagioclase [An38-An57 in basaltic andesites; An27-An28 in andesites] and clinopyroxene as dominant phenocrystal phase in a cryptocrystalline groundmass. Plagioclase (An25-An45) marks the principal phenocrystal phase in dacite with sub-ordinate proportion of biotite and amphibole of both primary and secondary origin along with minor amount of K-feldspar. The submarine volcanic rocks from Andaman arc system exhibit pronounced LILE, LREE enrichments and HFSE (negative Nb, Ta and Ti anomalies), MREE and HREE depletion thereby endorsing the influence of subduction zone processes in their genesis. Elevated abundances of Th with relatively higher LREE/HFSE than LILE/HFSE, LILE/LREE suggest significant contribution of sediments from the subducting slab over slab-dehydrated aqueous fluids towards mantle wedge metasomatism thereby modifying the sub-arc mantle. Partial melting curves calculated using the non-modal batch melting equation suggest primary magma generated due to ~31–35 % degree of partial melting of spinel lherzolite mantle beneath the arc system. Fractional crystallization model suggests fractionation of 45 % plagioclase, 40 % clinopyroxene, 5–10 % amphibole and 5–10 % biotite which is consistent with the petrographic observations. Further, the assimilation-fractional-crystallization (AFC) model for the studied rocks indicates nominal crustal contamination. Therefore, this study infers that the melt evolution history for the Andaman arc volcanic rocks can be translated in terms of (i) generation of precursor magma by ~31–35 % partial melting of a spinel lherzolite mantle wedge, metasomatized predominantly by subducted slab sediments and (ii) the parent magma generation was ensued by fractionation dominated melt differentiation with nominal input from arc crust.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号