首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on potentiometric data and gypsum solubility in mixed salt solutions, respectively, the activity coefficients of MgCOo3 and CaSOo4 ion pairs decrease with ionic strength (I) at 25°C. Computed γ's for the ion pairs fit the empirical equation log γi = ? BI. B coefficients of 0.63 ±0.10 for MgCOo3 and 0.45 ± 0.15 for CaSOo4 are obtained from linear regression of log γi values vs I between 0.04 and 0.6 molal. Assumptions that the activity coefficients of these neutral ion pairs equal unity or are approximated by the Setchenow expression (log γi = kI) are therefore invalid at moderate ionic strengths. Log γi = ? BI is the same general form as the equation of Kirkwood (Chem. Rev.24, 233–251, 1939) for neutral dipoles.  相似文献   

2.
The release of exchangeable Mg in marine sediments from displacement by ammonium ions was estimated by way of experimentally determining the parameters that govern this ion-exchange equilibrium on solid geochemical phases: smectite, humic acid, illite and opal.

We showed that: (a) both the conditional selectivity constant as well as the solid concentration are important parameters in determining the relative contribution of ammonium-exchangeable Mg from smectite, organic matter, illite and opal; and (b) that, except in the cases where opal or organic matter concentrations are very high, the clays are the dominant carrier phases for labile Mg which is exchangeable by ammonium.

A model, based on the sum of the contributions from the major geochemical phases present in the sediment reliably predicts the amount of Mg released by exchange with ammonium in marine sediments.  相似文献   


3.
On the basis of recently reported data on the kinetics of carbon-13 exchange between CO2 and CH4 at temperatures above 500°C, first order rate constants log k = 11.16?10,190/T were derived allowing variations in Δ, the difference in the isotopic composition of coexisting CO2 and CH4, to be evaluated as a function of initial composition and cooling rate of the rising geothermal fluid. Observed Δ-values in geothermal discharges are likely to represent frozen in compositions attained after minimum residence times of 20 ka at 400°C or 10 Ma at 300°C. The carbon-13 contents of any biogenic gases are unlikely to have been affected by thermal re-equilibration at temperatures below 200°C. The chemical equilibrium involving CO2 and CH4 can be expected to proceed about a hundred times faster than isotopic equilibration.  相似文献   

4.
The cumulative association constant (β2) for the geochemically important aqueous complex UO2[HPO4]2?2 has been determined by potentiometric titration in Na2HPO4-UO2(NO3)2 solutions in the pH range 3.9–4.7, at ionic strengths below 0.024 molal with the Newton-Raphson method used to compute β2 from the chemical analytical data. Based on 25 measurements we obtain logβ2 = 18.3 ± 0.2 at 25°C. From the same experiments we compute that the association constant of UO2OH+ is 8.9 ± 0.1, in disagreement with the value of 8.3 ± 0.3 for this constant given by Baes and Mesmer (1976).  相似文献   

5.
Hydrogen isotope exchange between water and orthosilicic acid (H4SiO4) was modeled using B3LYP calculations and classical transition-state theory. Configurations of 1, 2, 3 and 7 water molecules and H4SiO4 were used to investigate energetically viable reaction pathways. An upper-bound of 71 kJ/mol was assumed for the zero-point energy corrected barrier (ZPECB) because this is the experimentally determined activation energy for Si-O bond breaking (Rimstidt and Barnes, 1980) and ZPECB is expected to be close to this value. Long range solvation forces were accounted for using the integral equation formalism polarized continuum model (IEFPCM; Cancès et al., 1997). Primary and secondary isotope effects were computed by exchanging hydrogen atoms with deuterium. Results show that reaction mechanisms involving 3 and 7 water molecules have ZPECB of 34 to 38 kJ/mol, whereas those involving 1 and 2 water molecules have ZPECB in excess of the set upper-bound. The lower range of ZPECB with 3 or 7 water molecules is reasonable to explain rapid hydrogen isotope exchange with silicates. Rate constant calculations accounting for tunneling, anharmonicity and scaling factors indicate that the reaction is fast and equilibrium can be assumed under most geologic conditions.  相似文献   

6.
N2-CH4(CO2)混合气体在线标样制备及其拉曼定量因子测定   总被引:1,自引:1,他引:0  
利用混合气体的标准样品对激光拉曼探针进行标定,可以快速准确地对包裹体中的无机及有机气相组分进行定量分析。而常用的商用钢瓶装混合气体标样,存在费用高、气体组成单一固定等缺点。本文设计了一套在线标样制备装置,提出一种在线配置不同浓度和压力条件下混合气体标样的方法。利用高纯度(纯度99.999%)的N2、CH4以及CO2钢瓶气,经过在线混合增压,在5 MPa和10 MPa条件下制备了N2摩尔分数为30%、50%和70%的N2-CH4以及N2-CO2混合气体在线标样。该方法制备的标样与70%N2+30%CO2的商用钢瓶气标样对比表明,CO2与N2的拉曼相对峰高以及相对峰面积值的误差在4%以内,具有较高的准确度和重现性。通过不同压力和浓度条件下CH4以及CO2的拉曼相对定量因子测定表明,气体的相对定量因子在5~10 MPa压力条件下与压力及组成无关。地质样品应用结果表明,本方法可以方便、灵活、准确地按任意比例将两瓶及两瓶以上纯气体钢瓶样品进行混合及增压,为激光拉曼标定、气体组成原位测量等提供了一种新的技术思路。  相似文献   

7.
Recent isopiestic studies of the Fe2(SO4)3-H2SO4-H2O system at 298.15 K are represented with an extended version of Pitzer’s ion interaction model. The model represents osmotic coefficients for aqueous {(1 − y)Fe2(SO4)3 + yH2SO4} mixtures from 0.45 to 3.0 m at 298.15 K and 0.0435 ? y ? 0.9370. In addition, a slightly less accurate representation of a more extended molality range to 5.47 m extends over the same y values, translating to a maximum ionic strength of 45 m. Recent isopiestic data for the system at 323.15 K are represented with the extended Pitzer model over a limited range in molality and solute fraction. These datasets are also represented with the usual “3-parameter” version of Pitzer’s model so that it may be incorporated in geochemical modeling software, but is a slightly less accurate representation of thermodynamic properties for this system. Comparisons made between our ion interaction model and available solubility data display partial agreement for rhomboclase and significant discrepancy for ferricopiapite. The comparisons highlight uncertainty remaining for solubility predictions in this system as well as the need for additional solubility measurements for Fe3+-bearing sulfate minerals. The resulting Pitzer ion interaction models provide an important step toward an accurate and comprehensive representation of thermodynamic properties in this geochemically important system.  相似文献   

8.
The electrical conductivities of aqueous solutions of Li2SO4 and K2SO4 have been measured at 523-673 K at 20-29 MPa in dilute solutions for molalities up to 2 × 10−2 mol kg−1. These conductivities have been fitted to the conductance equation of Turq, Blum, Bernard, and Kunz with a consensus mixing rule and mean spherical approximation activity coefficients. In the temperature interval 523-653 K, where the dielectric constant, ε, is greater than 14, the electrical conductance data can be fitted by a solution model which includes ion association to form , , and , where M is Li or K. The adjustable parameters of this model are the first and second dissociation constants of the M2SO4. For the 673 K and 300 kg m−3 state point where the Coulomb interactions are the strongest (dielectric constant, ε = 5), models with more extensive association give good fits to the data. In the case of the Li2SO4 model, including the multi-ion associate, , gave an extremely good fit to the conductance data.  相似文献   

9.
We report rates of oxygen exchange with bulk solution for an aqueous complex, IVGeO4Al12(OH)24(OH2)128+(aq) (GeAl12), that is similar in structure to both the IVAlO4Al12(OH)24(OH2)127+(aq) (Al13) and IVGaO4Al12(OH)24(OH2)127+(aq) (GaAl12) molecules studied previously. All of these molecules have ε-Keggin-like structures, but in the GeAl12 molecule, occupancy of the central tetrahedral metal site by Ge(IV) results in a molecular charge of +8, rather than +7, as in the Al13 and GaAl12. Rates of exchange between oxygen sites in this molecule and bulk solution were measured over a temperature range of 274.5 to 289.5 K and 2.95 < pH < 4.58 using 17O-NMR.Apparent rate parameters for exchange of the bound water molecules (η-OH2) are kex298 = 200 (±100) s−1, ΔH = 46 (±8) kJ · mol−1, and ΔS = −46 (±24) J · mol−1 K−1 and are similar to those we measured previously for the GaAl12 and Al13 complexes. In contrast to the Al13 and GaAl12 molecules, we observe a small but significant pH dependence on rates of solvolysis that is not yet fully constrained and that indicates a contribution from the partly deprotonated GeAl12 species.The two topologically distinct μ2-OH sites in the GeAl12 molecule exchange at greatly differing rates. The more labile set of μ2-OH sites in the GeAl12 molecule exchange at a rate that is faster than can be measured by the 17O-NMR isotopic-equilibration technique. The second set of μ2-OH sites have rate parameters of kex298 = 6.6 (±0.2) · 10−4 s−1, ΔH = 82 (±2) kJ · mol−1, and ΔS = −29 (±7) J · mol−1 · K−1, corresponding to exchanges ≈40 and ≈1550 times, respectively, more rapid than the less labile μ2-OH sites in the Al13 and GaAl12 molecules. We find evidence of nearly first-order pH dependence on the rate of exchange of this μ2-OH site with bulk solution for the GeAl12 molecule, which contrasts with Al13 and GaAl12 molecules.  相似文献   

10.
The solubility of Fe-ettringite (Ca6[Fe(OH)6]2(SO4)3 · 26H2O) was measured in a series of precipitation and dissolution experiments at 20 °C and at pH-values between 11.0 and 14.0 using synthesised material. A time-series study showed that equilibrium was reached within 180 days of ageing. After equilibrating, the solid phases were analysed by XRD and TGA while the aqueous solutions were analysed by ICP-OES (calcium, sulphur) and ICP-MS (iron). Fe-ettringite was found to be stable up to pH 13.0. At higher pH-values Fe-monosulphate (Ca4[Fe(OH)6]2(SO4) · 6H2O) and Fe-monocarbonate (Ca4[Fe(OH)6]2(CO3) · 6H2O) are formed. The solubilities of these hydrates at 25 °C are:   相似文献   

11.
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin (QDNB). However, the impact of deep structures on gas-bearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear. In this study, the authors apply high-resolution 3D seismic and logging while drilling (LWD) data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gas-escape pipes. The findings reveal the following: (1) Two significant deep-large faults, F1 and F2, developed on the edge of the Songnan Low Uplift, control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys. (2) The formation of gas chimneys is likely related to fault activation and reactivation. Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults, while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2. (3) Most gas-escape pipes are situated near the apex of the two faults. Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.  相似文献   

12.
Based on our previous study of the intermolecular potential for pure H2O and the strict evaluation of the competitive potential models for pure CH4 and the ab initio fitting potential surface across CH4-H2O molecules in this study, we carried out more than two thousand molecular dynamics simulations for the PVTx properties of pure CH4 and the CH4-H2O mixtures up to 2573 K and 10 GPa. Comparison of 1941 simulations with experimental PVT data for pure CH4 shows an average deviation of 0.96% and a maximum deviation of 2.82%. The comparison of the results of 519 simulations of the mixtures with the experimental measurements reveals that the PVTx properties of the CH4-H2O mixtures generally agree with the extensive experimental data with an average deviation of 0.83% and 4% in maximum, which is equivalent to the experimental uncertainty. Moreover, the maximum deviation between the experimental data and the simulation results decreases to about 2% as temperature and pressure increase, indicating that the high accuracy of the simulation is well retained in the high temperature and pressure region.After the validation of the simulation method and the intermolecular potential models, we systematically simulated the PVTx properties of this binary system from 673 K and 0.05 GPa to 2573 K and 10 GPa. In order to integrate all the simulation results and the experimental data for the calculation of thermodynamic properties, an equation of state (EOS) is developed for the CH4-H2O system covering 673-2573 K and 0.01-10 GPa. Isochores for compositions <4 mol% CH4 up to 773 K and 600 MPa are also determined in this paper. The program for the EOS can be downloaded from www.geochem-model.org/programs.htm.  相似文献   

13.
The effects of phosphate speciation on both rates of isotopic exchange and oxygen isotope equilibrium fractionation factors between aqueous phosphate and water were examined over the temperature range 70 to 180°C. Exchange between phosphate and water is much faster at low pH than at high pH, an observation that is similar to what has been observed in the analogous sulfate-water system. Oxygen isotope fractionations between protonated species like H3PO4 and H2PO4 that are dominant at relatively low pH and species like PO43− and ion pairs like KHPO4 that are dominant at relatively high pH, range between 5 and 8‰ at the temperatures of the experiments. In aqueous phosphate systems at equilibrium, 18O/16O ratios increase with increasing degree of protonation of phosphate. This effect can be explained in part by the relative magnitudes of the dissociation constants of the protonated species. Under equilibrium conditions, carbonate in solution or in solid phases concentrates 18O relative to orthophosphate in solution or in solid phases at all temperatures, supporting the traditional view that biogenic phosphate is precipitated in near oxygen isotope equilibrium with body/ambient aqueous fluids with no attendant vital effects.  相似文献   

14.
In a recent study, sulphate-bearing green rust (GRSO4) was shown to incorporate Na+ in its structure (NaFeII6FeIII3(OH)18(SO4)2(s); GRNa,SO4). The compound was synthesised by aerial oxidation of Fe(OH)2(s) in the presence of NaOH. This paper reports on its free energy of formation .Freshly synthesised GRNa,SO4 was titrated with 0.5 M H2SO4 in an inert atmosphere at 25 °C, producing dissolved Fe2+ and magnetite or goethite. Solution concentrations, PHREEQC and the MINTEQ database were used to calculate reaction constants for the reactions:
  相似文献   

15.
16.
17.
18.
Reaction pathways, solvent effects and energy barriers have been investigated for the water exchange of the polyoxocation GaO4Al12(OH)24(H2O)127+ (K-GaAl12) in aqueous solution by means of supermolecule density functional theory calculations. In the proposed reaction pathway, the supermolecular reactant K-GaAl1215H2O first loses a water ligand to form an intermediate with a five-coordinated aluminum atom, and then the incoming water molecule in the second coordination sphere attacks the intermediate with a five-coordinated aluminum atom to produce the reaction product. Our calculated results indicate that the water exchange of K-GaAl12 proceeds via a dissociative mechanism, and that the reverse reaction of Step II is the most favorable dissociative pathway, with a barrier height of 31.3 kJ mol−1. The calculated transition-state rate for the favorable dissociative pathway is much larger than the experimental rate constant, but is close to the data calculated for Al30 by molecular dynamics. The transmission coefficient was also predicted on the basis of both the calculated transition-state rate and the experimental rate. Our calculated results also indicate that both the explicit solvent effect and the bulk solvent effect have obvious effects on the barrier heights of the water exchange reaction of K-GaAl12. By comparison, the water exchange mechanism for K-GaAl12 was found to be more similar to that for mineral surfaces than that for monomeric aluminum species.  相似文献   

19.
Pyromorphite Pb5(PO4)3Cl and mimetite Pb5(AsO4)3Cl are isostructural minerals with apatite. Due to their high environmental stability, they have gained considerable attention as metals sequestration agents in water treatment and contaminated soil remediation. Pyromorphite and mimetite can form a continuous solid solution series in near-Earth surface environments. Precipitation of the end members and intermediate members of the series is likely to occur in the areas where the cost-effective in situ immobilization reclamation method, based on phosphate amendments, is applied. In contrast to the widely studied thermodynamic parameters of pyromorphite and mimetite, knowledge of the thermodynamics of their solid solutions is sparse. To supplement the data, a number of compounds from the pyromorphite-mimetite series were synthesized at room temperature using a method to simulate the conditions in the near-Earth surface environments. Afterwards, batch dissolution and dissolution-recrystallization experiments of seven synthesized precipitates were conducted at 25 °C, pH = 2 and in a 0.05 M KNO3 background electrolyte. The experiments were carried out for a period of 6 (dissolution) and 14 (dissolution-recrystallization) months. A plateau in the [Pb] evolution patterns was used to determine equilibrium. All seven dissolutions were congruent, and the ionic activity products (IAP) of the minerals from the pyromorphite-mimetite solid solution series were calculated based on the dissolution reaction: . The IAPs for pyromorphite and mimetite exhibit a significant difference in values over three orders of magnitude between approximately 10−79 for pyromorphite and approximately 10−76 for mimetite. The series appeared to be ideal, and Lippmann and Roozboom diagrams were used for better understanding of its thermodynamics. The results indicated a strong tendency of pyromorphite to partition into the solid phase in the series, which explains some of the naturally observed phenomena. The improvement of the lattice stability of the mimetite due to isostructural phosphate substitutions in anionic sites was observed. The thermodynamic data reported in this study supplement existing databases used in geochemical modeling.  相似文献   

20.
Oxygen isotope exchange between H2O and H4SiO4 was modeled with ab initio calculations on H4SiO4 + 7H2O. Constrained optimizations were performed with the B3LYP/6-31+G(d,p) method to determine reactants, transition states, and intermediates. Long-range solvation was accounted for using self-consistent reaction field calculations. The mechanism for exchange involves two steps, a concerted proton transfer from H4SiO4 forming a 5-coordinated Si followed by a concerted proton transfer from the 5-coordinated Si forming another H4SiO4. The 5-coordinated Si intermediate is C2 symmetric. At 298K and with implicit solvation included, the Gibbs free energy of activation from transition state theory is 66 kJ/mol and the predicted rate constant is 16 s−1. Equilibrium calculations between 298K and 673K yield αH4SiO4-H2O that are uniformly less than, but similar to, αqtz-H2O, and therefore αqtz-H4SiO4 is expected to be relatively small in this temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号