首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metric type III solar radio burst positions are compared spatially and temporally to underlying active region geometry. The positions of these radio bursts have an asymmetric location distribution relative to simple bipolar regions. The type III bursts show a tendency to occur nearer the leading active region - an association shown before from type III burst and magnetic field polarity measurements. The type III bursts also generally occur to the left of the outward to inward directed magnetic field. The asymmetry relative to the outward directed magnetic field has a sense that is consistent with a mechanism of type III burst production that involves a pre-existing coronal current system situated between expanding closed and open magnetic field lines.  相似文献   

2.
It is shown that a precursor type IIIb burst is really associated with a type III burst. The broad longitude distribution of occurrence of type IIIb bursts also suggests that these bursts are emitted at a large angle to the open magnetic field in the corona.  相似文献   

3.
Wentzel  Donat G. 《Solar physics》1997,175(1):191-196
Circularly polarized radio radiation maintains its polarization even where the magnetic field reverses its sign relative to the ray (QT region) if the reversal is sufficiently abrupt (strong QT region). Bastian (1995) suggested that coronal turbulence scatters radiation, such as type I bursts, sufficiently to make the reversal abrupt where it would otherwise not be. However, the observed directivity of type I bursts sets an upper limit on the scattering. This limit implies that the turbulent scattering is not sufficient to maintain the circular polarization as in a strong QT region. The conclusion is strengthened by an analytical calculation of the polarization. Apparently, the fully polarized type I bursts, near disk center, encounter no horizontal magnetic fields, at least not until high enough in the corona that the QT region is strong anyway.  相似文献   

4.
We study the association of type III bursts related to H flares in different magnetic environments in the period 1970–1981. Special attention is paid to flares which partly cover a major spot umbra (Z-flares). In particular we consider the location of the spots in the active regions and the magnetic field intensities of spots covered by a ribbon. The association rate with type III bursts decreases to 17% when the flare is located inside the bipolar pattern of a large active region, compared with an association rate of 54% when the flare is situated outside it. The association rate increases with the magnetic field intensity of the spot covered by H emission; this is most clearly revealed for the flares occurring outside the bipolar pattern of active regions. Ninety-three percent of the flare-associated type III burst were accompanied by 10 cm radio bursts. For the most general case in which a flare is developing anywhere in an active region, the association with type III bursts generation increases with the increasing magnetic field intensity of the main spot of the group.  相似文献   

5.
We present the results of a study of the evolution of 3 February, 1986 flare at meter-decameter wavelengths using the two dimensional imaging observations made with the Clark Lake multifrequency radioheliograph. The flare was complex and produced various types of meter-decameter bursts. The preflare activity was observed in the form of type III bursts some tens of minutes prior to the impulsive onset. From the positional analysis of the preflare and impulsive phase type III bursts and other measured characteristics we discuss the characteristics of energy release and possible magnetic field configurations in the vicinity of energy release region. From positional and temporal studies of the flare continuum and type II burst in relation to the microwave and hard X-ray emissions, we discuss the possible magnetic field structures in which the accelerated particles are confined or along which they propagate. We develop a schematic model of the flaring region based upon our study.On leave from Indian Institute of Astrophysics, Kodaikanal, India.  相似文献   

6.
In this study, we present a detailed analysis, based on multiwavelength observations and magnetic field extrapolation, of a radio and X-ray event observed on March 17, 2002. This event was accompanied by a Coronal Mass Ejection (CME) observed by the Large-Angle Spectrometric Coronagraph (LASCO) aboard SOHO. During the main event, the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) mission observed a hard X-ray emission correlated in time with the development of a type III burst group. The CME development, the hard X-ray emission, and the type III burst group appear to be closely associated. The multifrequency Nançay Radioheliograph (NRH) shows that the type III bursts are produced at a distance from the active region that progressively increases with time. Their emitting sources are distributed along the western edge of the CME. We conclude the type III electron beams propagate in the interface region between the ascending CME and the neighboring open field lines. Due to the development of the CME, this region becomes progressively highly compressed. By measuring, at each frequency, the shift versus time of the type III positions, we estimate that the electron density in this compression region increased roughly by a factor of 10 over a few minutes. Another signature of this compression region is a narrow white light feature interpreted as a coronal shock driven by the CME lateral expansion.  相似文献   

7.
We compare evidence of coronal magnetic fields from polarized metric type III radio bursts with (a) global potential field models, (b) direct averages of the observed photospheric magnetic field, and (c) H synoptic charts. The comparison clearly indicates both that the principal aspects of type III burst radiation are understood and that global potential field models are a significantly more accurate representation of coronal magnetic field structure than either the large-scale photospheric field or H synoptic charts.  相似文献   

8.
The occurrence rate of type III solar bursts in the frequency range 4.9 MHz to 30 kHz is analyzed as a function of burst intensity and burst arrival direction. We find that (a) the occurrence rate of bursts falls off with increasing flux, S, according to the power law S –1.5, and (b) the distribution of burst arrival directions at each frequency shows a significantly larger number of bursts observed west of the Earth-Sun line than east of it. This western excess in occurrence rate appears to be correlated with the direction of the average interplanetary magnetic field, and is interpreted as beaming of the observed burst radiation along the magnetic field direction.Presently at the University of Maryland, College Park, Maryland.  相似文献   

9.
An analysis has been made of type III bursts recorded during a decametric solar storm observed from July 29 to August 16, 1975 with the UTR-2 antenna (Kharkov, IRE Acad. Sci. Ukr. SSR). The bursts were recorded with a dynamic spectrograph and radiometers at 25.0, 20.0, 16.7, and 12.5 MHz. Daily observations have yielded histograms of the type III burst distribution with respect to the frequency drift rate in three subbands between 25.0 and 12.5 MHz. During the middle stage of the storm the drift rate was about twice as high as at the onset and the final stage of the storm. Abrupt changes in the mean frequency drift rate were registered some two to three days after the active region McMath 13790 had come onto the limb and also before it disappeared behind the solar disk. Sudden changes in the drift rates of the type III bursts were accompanied by sudden changes of their mean duration. The rather long burst durations observed at 25.0 MHz at the beginning and the end of the radio storm coincided with such at the twice lower frequency, i.e. 12.5 MHz, during the period when an increased drift rate was observed.Similar variations of type III burst parameters can be interpreted in the framework of the plasma mechanism of burst generation in the corona, assuming that at the middle stage of the storm the bursts observed in the 25.0–12.5 MHz range were emitted at the fundamental whereas when the emitting region was near the limb the bursts received corresponded to the second harmonic of the Langmuir oscillations in the range of 12.5 to 6.25 MHz excited at greater heights.  相似文献   

10.
Radio emissions of electron beams in the solar corona and interplanetary space are tracers of the underlying magnetic configuration and of its evolution. We analyse radio observations from the Culgoora and WIND/WAVES spectrographs, in combination with SOHO/LASCO and SOHO/MDI data, to understand the origin of a type N burst originating from NOAA AR 10540 on January 20, 2004, and its relationship with type II and type III emissions. All bursts are related to the flares and the CME analysed in a previous paper (Goff et al., 2007). A very unusual feature of this event was a decametric type N burst, where a type III-like burst, drifting towards low frequencies (negative drift), changes drift first to positive, then again to negative. At metre wavelengths, i.e., heliocentric distances ≲1.5R , these bursts are ascribed to electron beams bouncing in a closed loop. Neither U nor N bursts are expected at decametric wavelengths because closed quasi-static loops are not thought to extend to distances ≫1.5R . We take the opportunity of the good multi-instrument coverage of this event to analyse the origin of type N bursts in the high corona. Reconnection of the expanding ejecta with the magnetic structure of a previous CME, launched about 8 hours earlier, injects electrons in the same manner as with type III bursts but into open field lines having a local dip and apex. The latter shape was created by magnetic reconnection between the expanding CME and neighbouring (open) streamer field lines. This particular flux tube shape in the high corona, between 5R and 10R , explains the observed type N burst. Since the required magnetic configuration is only a transient phenomenon formed by reconnection, severe timing and topological constraints are present to form the observed decametric N burst. They are therefore expected to be rare features.  相似文献   

11.
Ning  Zongjun  Fu  Qijun  Lu  Quankang 《Solar physics》2000,194(1):137-145
We present a special solar radio burst detected on 5 January 1994 using the multi-channel (50) spectrometer (1.0–2.0 GHz) of the Beijing Astronomical Observatory (BAO). Sadly, the whole event could not be recorded since it had a broader bandwidth than the limit range of the instrument. The important part was obtained, however. The event is composed of a normal drift type III burst on the lower frequency side and a reverse drift type III burst appearing almost simultaneously on the high side. We call the burst type III a burst pair. It is a typical characteristic of two type III bursts that they are morphologically symmetric about some frequency from 1.64 GHz to 1.78 GHz on the dynamic spectra records, which indicates that there are two different electron beams from the same acceleration region travelling simultaneously in opposite directions (upward and downward). A magnetic reconnection mode is a nice interpretation of type III burst pair since the plasma beta 0.01 is much less than 1 and the beams have velocity of about 1.07×108 cm s–1 after leaving the reconnection region if we assume that the ambient magnetic field strength is about 100 G.  相似文献   

12.
The observational evidence is reviewed for the occurrence of type III solar radio bursts in pairs with frequency ratio two to one. We show that the observations can be explained under the hypothesis that there is a tendency for a type III burst to be followed by a second burst within approximately one second. This explanation leads to fewer difficulties than the hypothesis that type III bursts occur in pairs, one member being emitted at the fundamental of the local coronal plasma frequency, the other at its second harmonic. We conclude that in general, type III bursts are emitted at the second harmonic of the plasma frequency and that type III theories should account for this and only under very special circumstances (which are rare) for the emission at the fundamental and the second harmonic.  相似文献   

13.
We report the observations of weak type III bursts at 73.8, 57.5, 50.0, and 38.5 MHz from Clark Lake Radio Observatory on four days and discuss their characteristics. In addition to Clark Lake data, the magnetogram and sunspot/active region data and the coronal streamer data obtained by HAO's Coronagraph/Polarimeter aboard SMM satellite are used to study the location of the burst sources with respect to the coronal streamers emanating from active regions. It is shown that the bursts occur within or close to the edge of dense coronal streamers implying that the coronal streamers contain open magnetic field lines along which the electrons generating the bursts propagate. The positional analysis of the bursts is used to estimate the variation of coronal electron density with radial distance.On leave from the Indian Institute of Astrophysics, Kodaikanal, India.  相似文献   

14.
Polarization measurements of type III bursts at 23.5 and 29.5 MHz have been compared for several years with indicators of magnetic fields in different height levels such as sunspot data, S-component characteristics, and noise storm data. By applying the Mount-Wilson and Brunner types of the related spot groups there results a positive relationship between the average degree of type III burst polarization and the magnitude or complexity of photospheric magnetic fields. For other parameters (leading spot area, peak intensity of the S-component at 9.1 cm wavelength) such a clear monotonic relation has not been found. Possibly the degree of polarization is influenced by height variations of the emitting level of the type III bursts at a fixed frequency due to variable electron densities. No connection has been detected between the type III burst polarization and noise storm fluxes which may be due to the local distance of the origin of both emissions.  相似文献   

15.
We discuss the spectra and positions of the meter-decameter wavelength radio sources associated with the 5 September 1973 flare. We discuss the evolution of the size of the type II burst source and show that it fluctuates by a factor of 10, or larger. Consequently, the potential and kinetic energies associated with the shock are uncertain by the same factor. By comparing the positions of the type II and type III sources we conclude that while the shock wave associated with the type II was guided along high loops, the type III electrons were injected along open field lines which diverged within a short height in the corona. The characteristics of a particularly interesting type III burst with a low-frequency cut-off are discussed. We argue that nearby loops were not disrupted by the shock and that the energetic electrons produced during the event must have been injected at several sites and guided along open field lines at large distances from the flare to produce type III bursts.  相似文献   

16.
A well-developed multiple impulsive microwave burst occurred on February 17, 1979 simultaneously with a hard X-ray burst and a large group of type III bursts at metric wavelengths. The whole event is composed of several subgroups of elementary spike bursts. Detailed comparisons between these three classes of emissions with high time resolution of 0.5 s reveal that individual type III bursts coincide in time with corresponding elementary X-ray and microwave spike bursts. It suggests that a non-thermal electron pulse generating a type III spike burst is produced simultaneously with those responsible for the corresponding hard X-ray and microwave spike bursts. The rise and decay characteristic time scales of the elementary spike burst are 1 s, 1 s and 3 s for type III, hard X-ray and microwave emissions respectively. Radio interferometric observations made at 17 GHz reveal that the spatial structure varies from one subgroup to others while it remains unchanged in a subgroup. Spectral evolution of the microwave burst seems to be closely related to the spatial evolution. The spatial evolution together with the spectral evolution suggests that the electron-accelerating region shifts to a different location after it stays at one location for several tens of seconds, duration of a subgroup of elementary spike bursts. We discuss several requirements for a model of the impulsive burst which come out from these observational results, and propose a migrating double-source model.  相似文献   

17.
Lesovoi  S.V.  Kardapolova  N.N. 《Solar physics》2003,216(1-2):225-238
An analysis of solar radio bursts with temporal fine structure (TFS) at 5730 MHz in relation to the magnetic configuration of the corresponding active regions (AR) is presented. We found that the occurrence of TFS bursts increases with increasing complexity of the AR's magnetic configuration. The degree of polarization of TFS bursts varies over a wide range. Most of these fast bursts with a high degree of polarization were observed in active regions with a simple magnetic configuration β. Most of the unpolarized fast bursts were observed in active regions with the most complicated configuration βγδ. Because bursts that are polarized in different modes have different displacements of position with respect to that of associated microwave bursts, we conclude that there are at least two types of TFS bursts at 5730 MHz. We think that fast bursts that are polarized in the ordinary mode are due to microwave type III bursts.  相似文献   

18.
High-resolution observations of solar radio bursts made simultaneously with multi-element compound interferometers at 3.75 and 9.4 GHz are presented.Preliminary results are: (1) The burst of December 16, 1967 showed a change in polarization distribution in the radio source, which suggests a magnetic field change in the source. (2) The existence of the multi-source burst is also confirmed at 3.75 GHz. (3) The source size of the impulsive burst is estimated to be 0.'5. (4) Among the GRF bursts there seem to be two kinds; one has a large angular size and the other has a small one.A brief discussion is given of the burst of December 16, 1967.  相似文献   

19.
Y. Ma  R. X. Xie  M. Wang 《Solar physics》2006,238(1):105-115
Detailed statistics and analysis of 264 type III bursts observed with the 625–1500 MHz spectrograph during the 23rd solar cycle (from July 2000 to April 2003) are carried out in the present article. The main statistical results are similar to those of microwave type III bursts presented in the literature cited, such as the correlation between type III bursts and flares, polarization, duration, frequency drift rate (normal and reverse slopes), distribution of type III bursts and frequency bandwidth. At the same time, the statistical results also point out that the average values of the frequency drift rates and degrees of polarization increase with the increase in frequency and the average value of duration decreases with the increase in frequency. Other statistical results show that the starting frequencies of the type III bursts are mainly within the range from 650 to 800 MHz, and most type III bursts have an average bandwidth of 289 MHz. The distributions imply that the electron acceleration and the place of energy release are within a limited decimetric range. The characteristics of the narrow bandwidth possibly involve the magnetic configuration at decimetric wavelengths, the location of electron acceleration in the magnetic field nearto the main flare, the relevant runaway or trapped electrons, or the coherent radio emission produced by some secondary shock waves. In addition, the number of type III bursts with positive frequency drift rates is almost equal to that with negative frequency drift rates. This is probably explained by the hypothesis that an equal number of electron beams are accelerated upwards and downwards within the range of 625 to 1500 MHz. The radiation mechanism of type III bursts at decimetric wavelengths probably includes these microwave and metric mechanisms and the most likely cause of the coherent plasma radiation are the emission processes of the electron cyclotron maser.  相似文献   

20.
Agalakov  B. V.  Ledenev  V. G.  Lubyshev  B. I.  Nefedyev  V. P.  Yazev  S. A.  Zubkova  G. N.  Kerdraon  A.  Urbarz  H. W. 《Solar physics》1997,173(2):305-318
Based on observations from the Siberian solar radio telescope, and invoking data from other observatories, we investigate preflare changes in the sunspot and floccular sources of radio emission and the development of an importance 2N flare in the chromosphere and corona in the active region on August 23, 1988.It has been ascertained that preflare changes became observable six hours prior to the flare onset and manifested themselves in intense flux fluctuations above the sunspot and in an enhancement of the source emission flux above the flocculus.It is shown that the flare onset is associated with a newly emerged magnetic flux in the form of a pore near the filament and with the appearance of radio sources above the filament. The flare was accompanied by type III radio bursts and a noise storm at meter wavelengths. Coronal mass ejection parameters are estimated from type III burst observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号