首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Specific dark energy models with linear inhomogeneous time-dependent equation of state, within the framework of 4d Friedman-Robertson-Walker (FRW) cosmology, are investigated. It is demonstrated that the choice of such 4d inhomogeneous fluid models may lead to a brane FRW cosmology without any explicit account of higher dimensions at all. Effectively, we thus obtain a brane dark energy universe without introducing the brane concept explicitly. Several examples of brane Rip cosmology arising from 4d inhomogeneous dark fluid models are given.  相似文献   

3.
Structure formation in inhomogeneous dark energy models   总被引:1,自引:0,他引:1  
We investigate how inhomogeneous quintessence models may have a specific signature even in the linear regime of large-scale structure formation. The dynamics of the collapse of a dark matter halo is governed by the value or the dynamical evolution of the dark energy equation of state, the energy density's initial conditions and its homogeneity nature in the highly non-linear regime. These have a direct impact on the redshift of collapse, altering in consequence the linearly extrapolated density threshold above which structures will end up collapsing. We compute this quantity for minimally coupled and coupled quintessence models, examining two extreme scenarios: first, when the quintessence field does not exhibit fluctuations on cluster scales and below – homogeneous dark energy; and secondly, when the field inside the overdensity collapses along with the dark matter – inhomogeneous dark energy. One shows that inhomogeneous dark energy models present distinct features which may be used to confront them with observational data, for instance, galaxy number counting. Fitting formulae for the linearly extrapolated density threshold above which structures will end up collapsing are provided for models of dark energy with constant equation of state.  相似文献   

4.
We consider a cosmological model based on a generalization of the equation of state proposed by Nojiri and Odintsov (2004) and ?tefan?i? (2005, 2006). We argue that this model works as a dark fluid model which can interpolate between dust equation of state and the dark energy equation of state. We show how the asymptotic behavior of the equation of state constrained the parameters of the model. The causality condition for the model is also studied to constrain the parameters and the fixed points are tested to determine different solution classes. Observations of Hubble diagram of SNe Ia supernovae are used to further constrain the model. We present an exact solution of the model and calculate the luminosity distance and the energy density evolution. We also calculate the deceleration parameter to test the state of the universe expansion.  相似文献   

5.
We investigate specific models for a dark energy universe leading to Quasi-Rip and Pseudo-Rip cosmologies. In the Quasi-Rip model the equation of state parameter w is less than ?1 in the first stage, but becomes larger than ?1 in the second stage. In the Pseudo-Rip model the Hubble parameter tends to a constant value in the remote future, although w is always less than ?1. Conditions for the appearance of the Quasi-Rip and the Pseudo-Rip in terms of the parameters in the equation of state are determined. Analogies with the theory of viscous cosmology are discussed.  相似文献   

6.
In this paper, we have constructed Wet Dark Fluid (WDF) model in an anisotropic homogeneous space-time namely Marder’s space time. We discussed two type of models as: power law expansion model and exponential expansion model. Also some physical parameters of the model are obtained and discussed.  相似文献   

7.
The Bianchi type-V universe filled with dark energy from a wet dark fluid has been considered. A new equation of state for the dark energy component of the universe has been used. It is modeled on the equation of state p=γ(ρ?ρ ? ) which can describe a liquid, for example water. The exact solutions to the corresponding field equations are obtained in quadrature form. The solution for constant deceleration parameter have been studied in detail for power-law and exponential forms both. The case $\gamma =\frac{1}{3}$ has been also analysed.  相似文献   

8.
9.
10.
Plane symmetric cosmological models with perfect fluid and dark energy   总被引:1,自引:0,他引:1  
We consider a self-consistent system of Plane symmetric cosmology and binary mixture of perfect fluid and dark energy. The perfect fluid is taken to be one obeying the usual equation of state p=γρ with γ∈[0,1]. The dark energy is considered to be either the quintessence or Chaplygin gas. Exact solutions to the corresponding Einstein’s field equations are obtained as a quadrature. The cases of Zeldovich Universe, Dust Universe and Radiation Universe and models with power-law and exponential expansion have discussed in detail. For large t, the models tend to be isotropic.  相似文献   

11.
12.
We consider a self-consistent system of Bianchi type-V cosmology and binary mixture of perfect fluid and dark energy. The perfect fluid is taken to be one obeying the usual equation of state p=γ ρ with γ∈[0,1]. The dark energy is considered to be either the quintessence or Chaplygin gas. Exact solutions to the corresponding Einstein equations are obtained as a quadrature. The cases of disordered radiation and models with power-law and exponential expansion have discussed in detail. For large t, the models tend to be isotropic.  相似文献   

13.
An inhomogeneous cylindrically symmetric cosmological model for stiff perfect fluid distribution with electromagnetic field is obtained.F 12 is the non-vanishing component of electromagnetic field tensor. The metric potentials are functions ofx andt both. The behaviour of the electromagnetic field tensor together with geometrical and physical aspects of the model are also examined.  相似文献   

14.
15.
Flux expulsion is an important consequence of the interaction of magnetic fields with fluid convection and has been well studied for particular cases of steady, single-cell flows. Here we examine a related phenomenon in inhomogeneous turbulence using direct numerical simulations. To understand our numerical results, we analyse average properties of our model, and obtain mean transport coefficients which can be used to describe the approach of the system to its final state. For the kinematic problem these transport coefficients give an excellent prediction of the expulsion process; however, the enhanced transport is suppressed by dynamical back-reaction of the Lorentz force. Finally, we discuss the astrophysical implications for magnetic fields in stellar convection zones. Segregation of magnetic fields from turbulent motion not only allows strong toroidal fields to accumulate in regions of convective overshoot but also permits significant poloidal fields to be maintained by dynamo action in stars like the Sun.  相似文献   

16.
A plane-symmetric inhomogeneous cosmological model of perfect fluid distribution with electromagnetic field, is obtained.F 12 is the non-vanishing component of the electromagnetic field tensor. To get a determinate solution, we assume the free gravitational field is Petrov type-II non-degenerate. In general, the model represents an expanding, shearing, non-rotating universe in which the flow vector is geodetic. The behaviour of the electromagnetic field tensor together with some geometrical and physical aspect of the model are also discussed.  相似文献   

17.
In this paper, we study the evolution of the dark energy parameter in the spatially homogeneous and isotropic Friedmann-Robertson-Walker (FRW) model filled with barotropic fluid and dark energy in the scalar-tensor theory of gravitation proposed by Brans and Dicke (Phys. Rev. 24:925, 1961). A determinate solution is presented using (i) the special law of variation for Hubble’s parameter proposed by Berman (Nuovo Cimento B 74:183, 1983) and (ii) trace free energy momentum tensor of the two fluid. Two cases of interacting and non-interacting fluid (barotropic and dark energy) scenario is considered and general results are obtained. The physical aspects of the results obtained are, also, discussed.  相似文献   

18.
Some inhomogeneous viscous fluid cosmological models in the presence of an electromagnetic field for cylindrical symmetry are obtained. To get a determinate solution, it is assumed that the coefficient of shear viscosity is proportional to the rate of expansion. The paper also discusses the behaviour of the model when viscosity is absent and comments on some other physical properties.  相似文献   

19.
In this paper, we have constructed a five dimensional LRS Bianchi type I cosmological model with wet dark fluid (WDF) in general relativity with the matter field described as bulk viscosity. It is found that in presence of bulk viscosity an inflationary effective stiff fluid cosmological model is obtained, whereas in absence of bulk viscosity the wet dark fluid degenerate to stiff fluid. Some physical and geometrical properties of the model are also discussed.  相似文献   

20.
We consider a self consistent system of Bianchi Type-I cosmology and Binary Mixture of perfect fluid and dark energy. The perfect fluid is taken to be obeying equations of state p PF =γρ PF with γ∈[0,1]. The dark energy is considered to be obeying a quintessence-like equation of state where the dark energy obeys equation of state p DE =ωρ DE where ω∈[−1,0]. Exact solutions to the corresponding Einstein field equations are obtained. Some special cases are discussed and studied. Further more power law models and exponential models are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号