首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of the charged particles are followed during contraction of a model of an interstellar cloud, with initial density number of n = 10 cm–3. The contraction is followed up to density increase by five orders of magnitude. Special care is given to the details of the negative ions. In addition, we have tested the ambipolar diffusion according to the results of the ion density.The results predict the importance of atomic ions in the diffuse regions. H+ and C+ are distinctly enhanced in the beginning of contraction but decrease as contraction proceeds. Molecular ions enhance as contraction proceeds and becomes important in dense regions. The most enhanced molecular ions are HCO+, O2 +, C2H3 +, H3O+ and SO+, H3 + is less abundant. The atomic ions (except metalic ions) decrease noticeably as density increases. In general the negative ions are of negligible fractional abundances. It has also been found that the time of ambipolar diffusion is shorter than the dynamical time, hence the magnetic field should be weakened in the central core as the central density increases to n = 104 cm–3.  相似文献   

2.
Modern concepts of the universe support the assumed existence of a nongravitational source, known as dark energy, for which ε + 3 P < 0 (where ε is the energy density and P is the pressure). This ensures accelerated expansion of the universe. This paper examines a tensor-scalar variant of the theory of gravitation with a conformally coupled scalar field. Various cosmological models are examined and the possible evolutionary development of the universe with accelerated expansion is discussed. Translated from Astrofizika, Vol. 51, No. 4, pp. 653–661 (November 2008).  相似文献   

3.
《Astroparticle Physics》2010,33(6):330-339
In this paper the implications of a recently proposed phenomenological model of cosmology, the Asymptotic Cosmological Model (ACM), on the behavior of scalar perturbations are studied. Firstly we discuss new fits of the ACM at the homogeneous level, including fits to the Type Ia Supernovae UNION dataset, first CMB peak of WMAP5 and BAOs. The linearized equations of scalar perturbations in the FRW metric are derived. A simple model is used to compute the CMB temperature perturbation spectrum. The results are compared with the treatment of perturbations in other approaches to the problem of the accelerated expansion of the universe.  相似文献   

4.
We study pilgrim dark energy model by taking IR cut-offs as particle and event horizons as well as conformal age of the universe. We derive evolution equations for fractional energy density and equation of state parameters for pilgrim dark energy. The phantom cosmic evolution is established in these scenarios which is well supported by the cosmological parameters such as deceleration parameter, statefinder parameters and phase space of ω ? and \(\omega'_{\vartheta}\) . We conclude that the consistent value of parameter μ is μ<0 in accordance with the current Planck and WMAP9 results.  相似文献   

5.
We reconsider the issue of cosmological dynamics in a DGP setup with a bulk scalar field. The ghost-free, normal branch of this DGP-inspired braneworld scenario has the potential to realize a self-consistent phantom-like behavior. The roles played by the bulk canonical scalar field on this phantom-like dynamics are explored. Within a dynamical system approach, the effective phantom nature of the scenario is investigated with details. This analysis shows that there is a stable, late-time de Sitter phase.  相似文献   

6.
We calculate the rate at which dark matter haloes merge to form higher mass systems. Two complementary derivations using Press–Schechter theory are given, both of which result in the same equation for the formation rate. First, a derivation using the properties of the Brownian random walks within the framework of Press–Schechter theory is presented. We then use Bayes' theorem to obtain the same result from the standard Press–Schechter mass function. The rate obtained is shown to be in good agreement with results from Monte Carlo and N -body simulations. We illustrate the usefulness of this formula by calculating the expected cosmological evolution in the rate of star formation that is due to short-lived, merger-induced starbursts. The calculated evolution is well-matched to the observed evolution in ultraviolet luminosity density, in contrast to the lower rates of evolution that are derived from semi-analytic models that do not include a dominant contribution from starbursts. Hence we suggest that the bulk of the observed ultraviolet starlight at z >1 arises from merger-induced starbursts. Finally, we show that a simple merging-halo model can also account for the bulk of the observed evolution in the comoving quasar space density.  相似文献   

7.
We consider cosmological dynamics of a canonical bulk scalar field, which is coupled non-minimally to 5-dimensional Ricci scalar in a DGP setup. We show that presence of this non-minimally coupled bulk scalar field affects the jump conditions of the original DGP model significantly. Within a superpotential approach, we perform some numerical analysis of the model parameter space and consider bulk-brane energy exchange in this setup. Also we show that the normal, ghost-free branch of the DGP solutions in this case has the potential to realize a self-consistent phantom-like behavior and therefore explains late time acceleration of the universe in a consistent way.  相似文献   

8.
We study quantum tunneling of scalar particles from black strings. For this purpose we apply WKB approximation and Hamilton-Jacobi method to solve the Klein-Gordon equation for outgoing trajectories. We find the tunneling probability of outgoing charged and uncharged scalars from the event horizon of black strings, and hence the Hawking temperature for these black configurations.  相似文献   

9.
The motions of three charged particles under non-Newtonian assumptions are shown to be expressed by differential equations of order up to 1/c 2 in relative coordinates. These equations are then shown to satisfy Lagrange's special solutions, i.e. the equilateral triangle and the collinear ones.  相似文献   

10.
A model is presented to describe the energization of charged particles in planetary magnetospheres. The model is based on the stochastic acceleration produced by a random electric field that is induced by the magnetic field fluctuations measured within the magnetospheres. The stochastic behavior of the electric field is simulated through a Monte Carlo method. We solve the equation of motion for a single charged particle—which comprises the stochastic acceleration due to the stochastic electric field, the Lorentz acceleration (containing the local magnetic field and the corotational electric field) and the gravitational planetary acceleration of the particle—under several initial conditions. The initial conditions include the ion species and the velocity distribution of the particles which depends on the sources they come from (solar wind, ionospheres, rings and satellites). We applied this model to Saturn’s inner magnetosphere using a sample of particles (H+, H2O+, N+, O+ and OH+) initially located on Saturn’s north pole, above the C-Ring, on the south pole of Enceladus, in the north pole of Dione and above the E-Ring. The results show that the particles tend to increase the value of their energy with time reaching several eV in a few seconds and the large energization is observed far from the planet. We can distinguish three main energization regions within Saturn’s inner magnetosphere: minimum (Saturn’s ionosphere), intermediate (Dione) and high-energy (Enceladus and the E-ring). The resulting energy spectrum follows a power-law distribution (>1 keV), a logistic, an exponential decay or an asymmetric sigmoidal (<1 keV).  相似文献   

11.
The adiabatic motion of charged particles in the magnetosphere has been investigated using Mead-Fairfield magnetospheric field model (Mead and Fairfield, 1975). Since the motion of charged particles in a dipolar field geometry is well understood, we bring out in this paper some important features in characteristic motion due to non-dipolar distortions in the field geometry. We look at the tilt averaged picture of the field configuration and estimate theoretically the parameters like bounce period, longitudinal invariant and the bounce averaged drift velocities of the charged particle in the Mead-Fairfield field geometry. These parameters are evaluated as a function of pitch angle and azimuthal position in the region of ring current (5 to 7 Earth radii from the centre of the Earth) for four ranges of magnetic activity. At different longitudes the non-dipolar contribution as a percentage of dipole value in bounce period and longitudinal invariant show maximum variation for particles close to 90° pitch angles. For any low pitch angle, these effects maximize at the midnight meridian. The radial component of the bounce averaged drift velocity is found to be greatest at the dawn-dusk meridians and the contribution vanishes at the day and midnight meridians for all pitch angles. In the absence of tilt-dependent terms in the model, the latitudinal component of the drift velocity vanishes. On the other hand, the relative non-dipolar contribution to bounce averaged azimuthal drift velocity is very high as compared to similar contribution in other characteristic parameters of particle motion. It is also shown that non-dipolar contribution in bounce period, longitudinal invariant and bounce averaged drift velocities increases in magnitude with increase in distance and magnetic activity.  相似文献   

12.
The problem of electromagnetic field interacting with viscous fluid without and with zero-mass scalar field has been studied. It has been shown that electromagnetic field cannot interact with viscous fluid for spherically-symmetric Robertson-Walker metric. Exact solutions corresponding to the problem of electromagnetic field interactions in presence of viscous fluid and zero-mass scalar field have been obtained subject to various physical conditions. It presents a scope for the study of imperfect fluid FRW models showing the existence of the electromagnetic field due to the presence of zero-mass scalar field.  相似文献   

13.
In this paper, we study a cosmological model with the sign-changeable interaction between agegraphic dark energy (ADE) and dark matter. For the accelerated expansion of the universe, the model parameters n and β should satisfy the condition n>1 and $-\frac{2}{3}<\beta<0$ . We also investigate the effect of the parameters n and β on the evolutive behavior of our universe. Furthermore, by analysis it is shown that the equation of state of ADE with the sign-changeable interaction can cross the phantom divide from w d >?1 to w d <?1 for the appropriate n and β. This is different from that of ADE with usual interaction, whose equation of state changes from w d <?1 to w d >?1.  相似文献   

14.
Certain new analytic solutions for slowly-rotating charged perfect-fluid universes coupled with zero-mass scalar field are found out to substantiate the possibility of the existence of rotating cosmological objects of such nature and their dynamics is investigated. The nature and role of the metric rotation (r, t) as well as that of the matter rotation (r, t) under different conditions are studied. The effects of the charged field and the scalar field on the rotational motion are also discussed. In some solutions we find out the temporal restrictions on the models for real astrophysical situations. Rotating models which are expanding as well are obtained, in which cases the rotational velocities are found to decay with the time, and these models may be taken as good examples of real astrophysical objects in this Universe.  相似文献   

15.
16.
17.
The dynamics of a slowly rotating charged viscous-fluid Universe coupled with a zero-mass scalar field is investigated; and the rotational perturbations of such models are studied in order to substantiate the possibility that the Universe is endowed with slow rotation, in the course of presentation of several new analytic solutions. The effects of charged field and scalar field on the rotational motion are discussed. Except for perfect dragging, the scalar field as well as the charged field is found to have a damping effect on the rotation of matter. Rotating models which are expanding as well are obtained, in which cases the rotational velocities are found to decay with the time, and these models may be taken as good examples of real astrophysical situations. The periods of physical validity of different models are also obtained.  相似文献   

18.
A new approach to the problem of the equilibrium conditions of a self-interacting massive charged particles is presented.As is well-known, the solution of the Laplace or Poisson equation in a finite volume V, with or without charged particles inside, and with prescribed boundary conditions of the bounding surfaces, can be obtained by means of the Green's theorem and Green's functions. This solutions permits the choice of an arbitrary harmonic or potential functions inside the volume V. The generalized concept of the Green functions gives rise to the possibility that we can define these arbitrary harmonic or potential functions in order to generalize the well-known equilibrium conditions.  相似文献   

19.
We study the effect of an imposed magnetic field on the motion of charged dust particles in magnetically active regions of a protoplanetary disc. Assuming a power law structure for the vertical and the toroidal components of the magnetic field for the regions beyond magnetically dead region of the disc, the radial and the vertical velocities of the charged particles, in the asymptotic case of small particles, are calculated analytically. While grains with radii smaller than a critical radius significantly are affected by the magnetic force, motion of the particles with larger radii is independent of the magnetic field. The critical radius depends on the magnetic geometry and the charge of the grains. Assuming that a grain particle has one elementary charge and the physical properties of the disc correspond to a minimum-mass solar nebula, we show that only micron-sized grains are affected by the magnetic force. Also, charge polarity determines direction of the radial velocity. For such small particles, both the radial and the vertical velocities increase due to the magnetic force.  相似文献   

20.
This paper investigates the reflection and transmission of charged particles incident on a rotational discontinuity whose thickness is small compared to their Larmor radius. This is done for the full range of parameters likely to occur for rotational discontinuities in the solar wind. Usually the proportion of particles reflected is similar to that predicted by adiabatic theory, except when the magnetic field ratio is close to unity, or the bend in the fieldlines is large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号