首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of Bohm potential on the head-on collision between two quantum electron-acoustic solitary waves (QEASWs) in two electron species quantum plasma have been investigated using the extended Poincaré–Lighthill–Kuo (PLK) method. The analytical phase shifts after the head-on collision of the two QEASWs are derived. Numerically, in two cases (i.e., the dense solid state plasma and the dense astrophysical environments), the results show that the cold electron-to-hot electron number density ratio, the quantum corrections of diffraction and Fermi temperature of hot electrons have strong effects on the nature of the phase shifts and the trajectories of two QEASWs after collision.  相似文献   

2.
The oblique collision of nonlinear quantum dust-acoustic (NQDA) solitary waves in a three-dimensional (3D) magnetized dense dusty plasma is investigated. Furthermore, two coupled Kortwege–de Vries equations for describing our model and the analytical phase shifts after the oblique collision of two NQDA solitary waves are derived using the extended Poincaré–Lighthill–Kuo (PLK) method. The modification in the phase shift and the trajectory of the NQDA solitary waves structures due to the inclusion of oblique collision and external magnetic field are discussed numerically. The numerical results are applied to high density astrophysical situations such as in superdense white dwarfs.  相似文献   

3.
Interaction of dust acoustic solitary waves in plasmas consisting of medium disorders is investigated. Disorders and inhomogeneities of the medium are added to the equation of motion as perturbative terms through the medium parameters. The effects of these perturbations on the behaviour of solitary waves are studied with numerical simulations and the results are compared with theoretical predictions in a uniform media.  相似文献   

4.
Nonlinear ion acoustic solitary wave structures in electron-positron-ion (e-p-i) magnetized rotating plasmas is studied. The electron and positron species are assumed to be nonthermal and follow the kappa distribution function. The Korteweg de Vries (kdV) equation is derived by employing the reductive perturbation technique for solitary wave in the nonlinear regime. The variation in the amplitude and width of the solitary wave are discussed with the effects of positron concentration, temperature ratio of kappa distributed electrons to positrons, spectral index of the positrons, direction of propagation of the wave with magnetic field and effective gyrofrequency of the rotating nonthermal plasmas. The numerical results are also presented for illustration.  相似文献   

5.
Arbitrary amplitude ion-acoustic solitary waves propagating in a magnetized plasma composed of positive ions, superthermal electrons and positrons are investigated. For this purpose, the ions are represented by the hydrodynamical fluid equations while the non-Maxwellian electrons and positrons densities are assumed to follow kappa (κ) distribution. The basic equations are reduced to a pseudoenergy-balance equation. Existence conditions for large amplitude solitary waves are presented. The analytical and numerical analysis of the latter show that the ion-acoustic solitary wave can propagate only in the subsonic region in our plasma system and it is significantly influenced by the plasma parameters. The present analysis could be helpful for understanding the nonlinear ion-acoustic solitary waves propagating in interstellar medium and pulsar wind, which contain an excess of superthermal particles.  相似文献   

6.
The propagation of the nonlinear electrostatic ion acoustic solitary wave structures in two component, non relativistic, homogenous, magneto rotating plasma are studied. The inertialess electrons are assumed to follow nonextensive q velocity distribution. Small amplitude reductive perturbation technique is applied to derive Korteweg de Vries (KdV) equation and its analytical solution is presented. The effects of variation of different plasma parameters on propagation characteristics of solitary wave structure in the presence of the Coriolis force are discussed. It is observed that nonextensive parameter q modifies the structure of solitary wave structures in rotating plasmas.  相似文献   

7.
Existence of compressive relativistic solitons is established in an arbitrary ξ-direction, inclining at an angle to the direction of the weak magnetic field (ω pi ω Bi ) in this plasma compound with ions, relativistic electrons and relativistic electron beams. It is observed that the absolute linear growth of amplitudes of compressive solitons is due to inactive role of the weak magnetic field and the initial streaming speeds of relativistic electrons, electron beams, and Q b (ion mass to electron beam mass). Besides, the small initial streaming of electrons is found to be responsible to generate relatively high amplitude compressive solitons. The non-relativistic ions in the background plasma, but in absence of electron-beam drift and in presence of weak magnetic field are the causing effect of interest for the smooth growth of soliton amplitudes in this model of plasma.  相似文献   

8.
The modified Kodomtsev-Petviashvili-Burger (mKP-Burger) and Kodomtsev-Petviashvili-Burger equations are derived in strongly coupled dusty plasmas containing iso-nonthermal ions; Boltzmann distributed electrons and variable dust charge. We use reductive perturbation method and discuss on solitary waves and shock waves solutions of these equations.  相似文献   

9.
Nonlinear properties of the quantum magnetoacoustic wave are studied in electron-ion magnetoplasmas. In this regard, cylindrical Korteweg deVries (CKdV) equation is derived for small amplitude perturbations. The solution of the planar KdV equation is obtained using the tanh method and is subsequently used as an initial profile to solve the CKdV equation. It is found that the system under consideration admits compressive solitary structures. Finally, it is found that the amplitude as well as the width of the nonplanar magnetosonic solitary structure increases with the increase in the magnetic field whereas a decrease is observed with the increase in number density of the system. The present study may be beneficial to understand the nonlinear wave propagation in nonplanar geometries in dense plasmas.  相似文献   

10.
A set of three nonlinearly coupled equations governing the interaction between electromagnetic ion-cyclotron and magnetosonic waves is derived. In appropriate limiting cases, the set yields simplified equations. On the other hand, the full set of equations is used to derive a general dispersion relation for the parametric interaction of electromagnetically modulated ion-cyclotron wave packets. An analytical expression for the growth rate of the electromagnetic modulational instability is presented. The relevance of our investigation to non-thermal electromagnetic fluctuations in astrophysical and cometary plasmas is pointed out.  相似文献   

11.
Progress in understanding the nonlinear features of dust-acoustic waves (DAWs) which accompany a collisional strongly and weakly coupled unmagnetized dusty plasma with Boltzmann distributed electrons, ions and negatively charged dust grains is presented. By using a hydrodynamic model, the Korteweg–de Vries-Burgers (KdV-Burgers) equation is derived. The existence regions of the solitary pulses are defined precisely. Furthermore, numerical calculations reveal that, due to collisions, the DAWs damp waves and the damping rate of the waves depends mainly on the collision frequency. The collisions are found to significantly change the basic properties of the DAWs. The effects of electron-to-ion concentration ratio, and ion-to-electron temperature ratio have important roles in the behavior of the DAWs. The results may have relevance in space and laboratory dusty plasmas.  相似文献   

12.
Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.  相似文献   

13.
In the present work, we have considered the nonlinear effects due to trapped electrons in an inhomogeneous degenerate quantum plasma. The formation of drift solitary structures has been investigated for both fully and partially degenerate plasmas. The Sagdeev potential approach has been employed to obtain arbitrary amplitude solitary structures. Interestingly, for a fixed value of density, not only compressive but rarefactive solitary structures have been obtained for a certain temperature range. Furthermore, it has been observed that the drift solitary structures exist only for the case when the drift velocity is smaller than the velocity of the nonlinear structure. The theoretical results obtained have been analyzed numerically for the parameters typically found in white dwarfs and the relevance of the results with regard to white dwarf asteroseismology is also pointed out.  相似文献   

14.
In the present investigation, Electron acoustic solitons in a plasma consisting of cold electrons, superthermal hot electrons and stationary ions are studied. The basic properties of small but finite amplitude solitary potential structures that may exist in a given plasma system have been investigated theoretically using reductive perturbation technique. It has been found that the profile of electron acoustic solitary wave structures is very sensitive to relative hot electron density, $\alpha(=\frac{n_{h0}}{n_{c0}})$ , temperature of hot to cold electrons, $\theta(=\frac{T_{h}}{T_{c}})$ and the spectral index κ. The implications of the present study may be applied to explain some features of large amplitude localized structures that may occur in the plasma sheet boundary layer.  相似文献   

15.
The propagation of solitary waves in an unmagnetized collisional dusty plasma consisting of a negatively charged dust fluid, positively charged ions, isothermal electrons, and background neutral particles is studied. The ionization, ion loss, ion–neutral, ion–dust, and dust–neutral collisions are considered. Applying a reductive perturbation theory, a damped Korteweg–de Vries (DKdV) equation is derived. On the other hand, at a critical phase velocity, the dynamics of solitary waves is governed by a damped modified Korteweg–de Vries (DMKdV) equation. The nonlinear properties of solitary waves in the two cases are discussed.  相似文献   

16.
Propagation of cylindrical and spherical ion acoustic solitary waves in plasmas consisting of cold ions, superthermal electrons and thermal positrons are investigated. It is shown that cylindrical/spherical Korteweg-de-Vries equation governs the dynamics of ion-acoustic solitons. The effects of nonplanar geometry and also superthermal electrons on the characteristics of solitary wave structures are studied using numerical simulations. Obtained results are compared with the results of the other published papers and errors in the results of some papers are pointed.  相似文献   

17.
This article presents the first study of the head-on collision of two ion-acoustic solitary waves (IASWs) in magnetized plasmas with nonextensive electrons and positrons using the extended Poincaré-Lighthill-Kuo (PLK) method. The effects of the ion gyro-frequency to ion plasma frequency ratio, the positron to ion number density ratio, the electrons temperature to positrons temperature ratio, and the nonextensive parameter q on the phase shifts are investigated. It is shown that these factors significantly modify the phase shifts.  相似文献   

18.
The Head on collision of dust ion acoustic solitary waves (DIASWs) in a magnetized quantum dusty plasma is investigated. Two sides Korteweg-de Vries (KdV) equations are obtained, the analytical phase shifts and the trajectories after the head-on collision of two DIASWs in a three species quantum dusty plasma are derive by using the extended version of Poincaré-Lighthill-Kuo (PLK) method. It is observed that the phase shifts are significantly affected by the quantum parameters like quantum diffraction, the ion cyclotron frequency and the ratio of the densities of electrons to ions.  相似文献   

19.
Properties of propagation of large amplitude dust ion-acoustic solitary waves and double layers are investigated in electron-positron-ion plasma with highly charged negative dust. Sagdeev pseudopotential method has been used to derive the energy balance equation. The expression for the critical Mach number (lower/upper limit) for the existence of solitary structures has also been derived. The Sagdeev pseudopotential is a function of numbers of physical parameters such as ion temperature (σ), positron density (δ p ), dust density (δ d ) and electron to positron temperature ratio (β). These parameters significantly influence the properties of the solitary structures and double layers. Further it is found that both polarity (compressive and rarefactive) solitons and negative potential double layers are observed.  相似文献   

20.
Ion-acoustic (IA) solitons in a collisionless plasma consisting of positive and negative ions and superthermal electrons are studied by using the reductive perturbation method. The basic set of fluid equations is reduced to Korteweg-de Vries (K-dV) and modified Korteweg-de Vries (mK-dV) equations. It is found that both compressive and rarefactive solitons can be propagated in this system. Also it is shown that at critical concentration of positive ions mK-dV solitons coexist. The effects of spectral index kappa, positive to negative ion density ratio and mass ratio of positive to negative ions on IA solitons structure are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号