首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Debris flows and soil and rock slides are among the main geological hazards in the mountain foothills of Central Chile. Geological risk associated with the development of landslides, especially debris flows triggered in the basins of ravines that drain into the capital city, Santiago, has increased in time due to accelerated urban expansion. A landslide hazard evaluation in the San Ramón Ravine, located within the foothills of Santiago is presented. Hazard evaluation is based on a methodology that combines the determination of landslide susceptibility calculated by integration of conditioning factors, with the assessment of slope failure and runout probabilities incorporating geotechnical engineering approaches. The methodology is appropriate for medium or subregional scale studies with limited data. The results show that in San Ramón Ravine the landslide hazard consists mainly of debris flows, rock block slides, rock falls and shallow soil slides. Among these, debris flows are the most important due to the urban area that can be affected. Other case studies show that the method can be used in other regions with minor adaptations for territorial planning or for engineering and environmental purposes.  相似文献   

2.
The aim of this study is to quantify the crustal differentiation processes and sources responsible for the origin of basaltic to dacitic volcanic rocks present on Cordón El Guadal in the Tatara-San Pedro Complex (TSPC). This suite is important for understanding the origin of evolved magmas in the southern Andes because it exhibits the widest compositional range of any unconformity-bound sequence of lavas in the TSPC. Major element, trace element, and Sr-isotopic data for the Guadal volcanic rocks provide evidence for complex crustal magmatic histories involving up to six differentiation mechanisms. The petrogenetic processes for andesitic and dacitic lavas containing undercooled inclusions of basaltic andesitic and andesitic magma include: (1) assimilation of garnet-bearing, possibly mafic lower continental crust by primary mantle-derived basaltic magmas; (2) fractionation of olivine + clinopyroxene + Ca-rich plagioclase + Fe-oxides in present non-modal proportions from basaltic magmas at ∼4–8 kbar to produce high-Al basalt and basaltic andesitic magmas; (3) vapor-undersaturated (i.e., P H2O<P TOTAL) partial melting of gabbroic crustal rocks at ∼3–7 kbar to produce dacitic magmas; (4) crystallization of plagioclase-rich phenocryst assemblages from dacitic magmas in shallow reservoirs; (5) intrusion of basaltic andesitic magmas into shallow reservoirs containing crystal-rich dacitic magmas and subsequent mixing to produce hybrid basaltic andesitic and andesitic magmas; and (6)␣formation and disaggregation of undercooled basaltic andesitic and andesitic inclusions during eruption from shallow chambers to form commingled, mafic inclusion-bearing andesitic and dacitic lavas flows. Collectively, the geochemical and petrographic features of the Guadal volcanic rocks are interpreted to reflect the development of shallow silicic reservoirs within a region characterized by high crustal temperatures due to focused basaltic activity and high magma supply rates. On the periphery of the silicic system where magma supply rates and crustal temperatures were lower, cooling and crystallization were more important than bulk crustal melting or assimilation. Received: 2 July 1997 / Accepted: 25 November 1997  相似文献   

3.
Natural Hazards - The 1982 eruption of El Chichón volcano constitutes the worst volcanic disaster in Mexico producing more than 2000 fatalities, thousands of displaced people and severe...  相似文献   

4.
The San Martín shield volcano, located in the Los Tuxtlas Volcanic Field, has experienced effusive shield-building activity, as well as explosive eruptions, as evidenced by direct observations during the last eruption in 1793. The threat to the surrounding villages consists principally of lahars, especially because of the tropical climate in the region. Ash fallout and lava flows represent additional hazards. In addition, the surrounding Quaternary monogenetic field includes more than 300 scoria cones and about 40 explosion craters (mainly maars) that also represent a hazard source. In the present study we constructed hazard maps using field data, orthophotos, spatial analysis, and specialized software (LAHARZ and HAZMAP) to deliminate lahar inundation zones, areas that could potentially be affected by ash fallout (including the evaluation of houses prone to roof collapse due to ash load), and the most susceptible areas for hosting future monogenetic vent formation.  相似文献   

5.
The Guxiang–Tongmai segment of the Jiali fault is situated northeast of the Namche Barwa Syntaxis in northeastern Tibet. It is one of the most active strike-slip faults near the syntaxis and plays a pivotal role in the examination of seismic activity within the eastern Himalayan Syntaxis. New study in the research region has yielded a 1:200000 gravity dataset covering an area 1500 km2. Using wavelet transform multiscale decomposition, scratch analysis techniques, and 3D gravity inversion methods, gravity anomalies, fault distributions, and density structures were determined across various scales. Through the integration of our new gravity data with other geophysical and geological information, our findings demonstrate substantial variations in the overall crustal density within the region, with the fault distribution closely linked to these density fluctuations. Disparities in stratigraphic density are important causes of variations in the capacity of geological formations to endure regional tectonic stress. Earthquakes are predominantly concentrated within the density transition zone and are primarily situated in regions of elevated density. The hanging wall stress within the Guxiang–Tongmai segment of the Jiali fault exhibits a notable concentration, marked by pronounced anisotropy, and is positioned within the density differential zone, which is prone to earthquakes.  相似文献   

6.
《China Geology》2023,6(2):228-240
The Sichuan-Tibet transportation corridor is located at the eastern margin of the Qinghai-Tibet Plateau, where the complex topography and geological conditions, developed geo-hazards have severely restricted the planning and construction of major projects. For the long-term prevention and early control of regional seismic landslides, based on analyzing seismic landslide characteristics, the Newmark model was used to carry out the potential seismic landslide hazard assessment with a 50-year beyond probability 10%. The results show that the high seismic landslide hazard is mainly distributed along large active tectonic belts and deep-cut river canyons, and are significantly affected by the active tectonics. The low seismic landslide hazard is mainly distributed in the flat terrain such as the Quaternary basins, broad river valleys, and plateau planation planes. The major east-west linear projects mainly pass through five areas with high seismic landslide hazard: Luding-Kangding section, Yajiang-Xinlong (Yalong river) section, Batang-Baiyu (Jinsha river) section, Basu (Nujiang river) section, and Bomi-Linzhi (eastern Himalaya syntaxis) section. The seismic action of the Bomi-Linzhi section can also induce high-risk geo-hazard chains such as the high-level glacial lake breaks and glacial debris flows. The early prevention of seismic landslides should be strengthened in the areas with high seismic landslide hazard.©2023 China Geology Editorial Office.  相似文献   

7.
Tsunamis can represent a significant risk to the population and cause huge economic damage in many costal regions. In order to be able to identify risk hot spots and implement targeted risk reduction measures, decision makers need to have a clear picture of the risk situation in their countries or regions. This work reviews existing approaches for tsunami risk assessment and recommends a five-step process for assessing tsunami risk. As a case study, a qualitative risk assessment for a worst-case tsunami scenario was carried out to understand the tsunami risk to the population in Cádiz. Moreover, a sensitivity analysis of the tsunami hazard input parameters was performed as a strong influence of the variability of the input parameters on the resultant tsunami hazard and risk zonation maps was observed. The study shows that regardless of the assumptions made a non-negligible tsunami risk to Cádiz exists.  相似文献   

8.
In this paper we determined the chronology of Lower Paleozoic arc-related granitic rocks in the Cordón de Lila and Sierra de Almeida ranges, northern Chile, based on new U–Pb ages obtained by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) on single zircons. Plutonism lasted ∼30 m.y., spanning from 490 to 460 Ma (Lower to Mid Ordovician). The obtained ages correspond to the plutonic units' crystallization ages and fit well with the observed contact relationships with their country rocks and mutual intrusion relationships, and also with biostratigraphical data from the sedimentary country rocks. Our geochronological results on the granitic rocks of Cordón de Lila and Sierra de Almeida ranges broadly agree with the known ages of the plutonic rocks in the Argentinian Puna, strengthening the idea that they formed part of the same magmatic arc in the western border of west Gondwana during the Early to Middle Ordovician.  相似文献   

9.
San Jerónimo Monastery (Granada, Spain) was selected as a case study for the investigation of the effect of indoor environmental conditions on salt weathering and for on-site testing of a remediation treatment using crystallization inhibitors on account of the extreme salt damage affecting both the building stone, a biomicritic limestone, calcarenite and wall paintings. A methodology combining several analysis techniques, phenomenological observations, salt and moisture analysis, environmental monitoring and thermodynamic simulations, was adopted in order to study the salt damage problems affecting this building. Within the collected samples, the majority of salts were found to be magnesium sulphate in the form of either hexahydrite or epsomite, depending on the climate conditions, together with minor amounts of gypsum, nitrates and chlorides. Comparison of empirical observations with thermodynamic simulations of the salt mixture behaviour clearly showed that salt-induced damage events take place during the seasonal changes from spring to summer and winter to spring. An aqueous solution of an organic phosphonate, which in laboratory experiments was found to be an effective inhibitor of magnesium sulphate crystallization, was sprayed over a selected test area of unpainted stonework at the site. Preliminary results seem to indicate that after the application of the treatment both the amount of efflorescence and ongoing damage to the stone support is reduced. However, long-term monitoring of the future condition of the test area is needed to confirm whether indeed this treatment is appropriate and effective in reducing salt damage at this case study site. The outcome of this study extends beyond the particular problems at San Jerónimo Monastery, as it demonstrates a methodological approach for the study and evaluation of salt weathering problems affecting cultural heritage.  相似文献   

10.
《Applied Geochemistry》2004,19(11):1855-1864
The Coquimbo region has been one of the richest producers of Cu, Au and Hg in Chile, and some of the deposits have been mined almost continuously since the 16th century. To assess the potential environmental contamination in this region, the authors measured the concentration of Cu, As, Cd, Zn and Hg in samples of stream and mine waters, stream sediments, soils, flotation tailings, and mine wastes in the Andacollo (Cu, Au, Hg) and Punitaqui (Cu–Au, Hg) districts. The concentration of Hg in the atmosphere in these districts were also measured. Although contamination is strongly controlled by the ore in each district, metal dispersion is modified by the degree of metallurgical processing efficiency as shown by the outdated Cu flotation system at Andacollo (stream sediments Cu 75–2200 μg/g). Conversely, more efficient procedures at Punitaqui resulted in less stream contamination, where stream sediments contained Cu ranging from 110–260 μg/g. However, efficient concentration by flotation of a given metal (e.g. Cu) may lead to the loss of another (e.g. Hg up to 190 μg/g in the tailings at Punitaqui), and therefore, to contamination via erosion of the tailings (downstream sediments Hg concentrations up to 5.3 μg/g). Continued use of Hg for Au amalgamation at Andacollo has led to significant contamination in stream sediments (0.2–3.8 μg/g Hg) and soils (2.4–47 μg/g Hg). Communities in this region are underdeveloped, and decades of inefficient treatment of flotation tailings and waste-rock stock piles has resulted in significant contamination of the surrounding landscape.  相似文献   

11.
A detailed mineralogical study is presented of the matrix of mudrocks sampled from spot coring at three key locations along the San Andreas Fault Observatory at depth (SAFOD) drill hole. The characteristics of authigenic illite–smectite (I–S) and chlorite–smectite (C–S) mixed-layer mineral clays indicate a deep diagenetic origin. A randomly ordered I–S mineral with ca. 20–25% smectite layers is one of the dominant authigenic clay species across the San Andreas Fault zone (sampled at 3,066 and 3,436 m measured depths/MD), whereas an authigenic illite with ca. 2–5% smectite layers is the dominant phase beneath the fault (sampled at 3,992 m MD). The most smectite-rich mixed-layered assemblage with the highest water content occurs in the actively deforming creep zone at ca. 3,300–3,353 m (true vertical depth of ca. 2.7 km), with I–S (70:30) and C–S (50:50). The matrix of all mudrock samples show extensive quartz and feldspar (both plagioclase and K-feldspar) dissolution associated with the crystallization of pore-filling clay minerals. However, the effect of rock deformation in the matrix appears only minor, with weak flattening fabrics defined largely by kinked and fractured mica grains. Adopting available kinetic models for the crystallization of I–S in burial sedimentary environments and the current borehole depths and thermal structure, the conditions and timing of I–S growth can be evaluated. Assuming a typical K+ concentration of 100–200 ppm for sedimentary brines, a present-day geothermal gradient of 35°C/km and a borehole temperature of ca. 112°C for the sampled depths, most of the I–S minerals can be predicted to have formed over the last 4–11 Ma and are probably still in equilibrium with circulating fluids. The exception to this simple burial pattern is the occurrence of the mixed layered phases with higher smectite content than predicted by the burial model. These minerals, which characterize the actively creeping section of the fault and local thin film clay coating on polished brittle slip surfaces, can be explained by the influence of either cooler fluids circulating along this segment of the fault or the flow of K+-depleted brines.  相似文献   

12.
Based on the analysis of space images and maps, the data of laser scanning, trenching, and field geophysical and seismotectonic studies in southern Yakutia, the Chulmakan seismogenic fault is mapped and characterized. The structure and parameters of seismogenic deformations of this fault, which crosses the Power of Siberia gas pipeline, are determined. A preliminary estimate of the Chulmakan seismodislocation age is given, as well as the magnitude of the corresponding paleoearthquake. The level of potential seismic hazard at the site where the Chulmakan Fault crosses the East Siberia–Pacific Ocean oil pipeline and Power of Siberia gas pipeline is determined.  相似文献   

13.
A study that tests the applicability and consistency of independent but complementary approaches in the assessment of interactions between surface water and shallow groundwater within a water-stressed basin is described. The mostly agricultural Limarí basin in arid north-central Chile was chosen as a suitable case study. The analyses involved: (1) a connectivity index method, (2) hydrochemistry, and (3) water isotopic geochemistry. Chemical and isotopic data were obtained from two sampling campaigns conducted in April (fall) and December (summer) of 2011 in 22 sampling locations, which included surface water and groundwater. The results obtained by each of the methodologies were mutually consistent and indicate high connectivity conditions. Additionally, the relative contribution by different sources was assessed through end-member mixing analysis, and for reaches of the river that showed gaining conditions, the contribution of groundwater inflow to stream discharge was estimated. It is suggested that this multi-method approach is useful for the characterization of surface-water–groundwater interactions, since it at least represents a suitable starting point for obtaining basic information on these relationships. Thus, it may become the base for further studies in arid and semi-arid basins facing water management challenges.  相似文献   

14.
Calbuco volcano is a Late Pleistocene-Holocene composite stratovolcano located at 41°20 S, in the southern region of the Southern Volcanic Zone of the Andes (SSVZ; 37°–46° S). In contrast to basalt and basaltic andesite, which are the dominant lava types on the volcanic front from 37° to 42° S, Calbuco lavas are porphyritic andesites which contain a wide variety of crustal xenoliths. They have SiO2 contents in the 55–60% range, and have comparatively low K2O, Rb, Ba, Th and LREF abundances relative to other SSVZ centers. Incompatible element abundance ratios are similar to those of most SSVZ volcanics, but 87Sr/86Sr and 143Nd/144Nd are respectively higher and lower than those of adjacent volcanic centers. Basalts from nearby Osorno stratovolcano, 25 km to the northeast, are similar to other basaltic SSVZ volcanoes. However, basalts from several minor eruptive centers (MEC), located east of Calbuco and Osorno volcano along the Liquiñe-Ofqui fault zone (LOFZ), are enriched in Ba, Nb, Th and LREE, and have higher La/Yb and lower Ba/La, K/La and Rb/La. 87Sr/86Sr and 143Nd/144Nd in MEC basalts are respectively lower and higher than those of Osorno and Calbuco lavas. We suggest that MEC basalts were produced by lower extents of mantle melting than basalts from Osorno and other SSVZ stratovolcanoes, probably as a result of lower water content in the source of MEC basalts. Calbuco andesites formed from basaltic parents similar to Osorno basalts, by moderate pressure crystallization of a hornblende-bearing assemblage accompanied by crustal assimilation. Hornblende stability in the Calbuco andesites was promoted by the assimilation of hydrous metasedimentary crustal rocks, which are also an appropriate endmember for isotopic trends, together with magma storage at mid-crustal depths. The unique characteristics of Calbuco volcano, i.e. the stability of hornblende at andesitic SiO2 contents, low 143Nd/144Nd and high 87Sr/86Sr, and abundant crustal xenoliths, provide evidence for crustal assimilation that is not apparent at more northerly volcanoes in the SSVZ.  相似文献   

15.
16.
Ogbonnaya Igwe 《Landslides》2014,11(2):319-326
A catastrophic rock debris avalanche on one of the highlands demarcating Cameroon and Nigeria, 3 days after a transient period of heavy rainfall in November 2010, killed two people and damaged economic trees, plants and farmlands. Detailed field investigation and sampling were undertaken by a team from the International Programme on Landslide to analyse the slope movement. The investigation was in two phases—5 days and then 7 months after the event to study the effect of alternating dry and rainy seasons on the geotechnical properties of the materials associated with the slope failures. It was also aimed at assessing the effect of time on the morphology of the slip plane as a new approach to understanding the development of potential failure planes and reactivated landslides. Available evidence showed that present failure planes form mini-deposition axes which may become future slip zones as they are still steep enough to accelerate instability. The research also traced the pattern of rock weathering and joints evolution in the area and found that the systematic weathering of feldspar in the basement aggravated slope instability by creating zones of weakness characterized by structures that aid fragmentation. Soils were thin (<1 m) in some slopes and deep (>2 m) in others and may represent the differential effect of weathering and erosion on the mountains which are important in analyzing the mechanism and mobility of the failed masses. Samples collected were subjected to various geotechnical laboratory tests such as unconsolidated undrained triaxial, consistency, particle size and permeability tests.  相似文献   

17.
The importance of disaster reduction has gained increased awareness within the international development community and thereby highlighted a need for a preliminary assessment of natural hazard risk in developing countries of the Asia?CPacific, including that for volcanic eruption. In this paper, we present a key component of such an assessment, which involved qualifying the frequency and potential consequences of large??Volcanic Explosivity Index of four or more??volcanic eruptions. The frequencies of large eruptions from volcanoes grouped by region were determined from frequency?Cmagnitude plots using data provided by the Smithsonian Institution??s Global Volcanism Program. However, calculated frequencies represent only minimum values due to an incomplete eruption record. Unfortunately, limited data precluded the calculation of eruption frequencies for the Solomon Islands, Fiji and Samoa. A first-order analysis of the populations potentially impacted by large volcanic eruptions suggest that (1) volcanic disasters affecting populations of >100,000 can be expected at least every decade in Indonesia and once every few decades in the Philippines and (2) a volcanic disaster impacting >1% of the population can be expected twice a century in Vanuatu, twice a millennium for Indonesia and the Philippines, and around every millennium in Papua New Guinea and Tonga.  相似文献   

18.
The Rı́mac and Chillón Rivers eroded deep valleys on the Lima coastal plain during the Late Miocene (before ca. 5.3 Ma), due to at least 485 m of uplift produced by the Nazca Ridge, combined with a sea level lowstand of around −50 m. The main paleo-Rı́mac channel along the southeastern boundary of the alluvial cone was apparently deflected by the Lima Anticline and reached the sea in the vicinity of Morro Solar, whereas the paleo-Chillón ran largely parallel to the anticline, breaching it to enter the Pacific at present-day Magdalena. These valleys were filled by fine-grained sediments, possibly during marine transgression at 1.7 Ma, which was followed by uplift and regression to below present sea level. Meltwater surges from the Andean Cordillera during subsequent interglacial stades caused an accumulation of coarse, reworked glacial moraine in the Rı́mac and Chillón fans, forming the Lima Conglomerate and drowning the Lima Anticline. The Rı́mac and Chillón Rivers subsequently migrated north and westward, possibly in response to tectonic tilting of the landscape, causing silt and mud to accumulate in abandoned channels along the southeastern boundary of the fan.  相似文献   

19.
With a thickness of 3900 m, the Tazareh section is one of the thickest developments of the Shemshak Formation in the Alborz range. It overlies with sharp and disconformable contact the limestones and dolomites of the Lower–Middle Triassic Elikah Formation and is topped, again with a disconformable contact, by the marls and limestones of the Middle Jurassic Dalichai Formation. The nearly exclusively siliciclastic succession represents a range of environments, from fluvial channels, flood plains, swamps and lake systems to storm-dominated shelf, and a comparatively deep marine and partly dysoxic basin. The segment of the section between 2300 and 3500 m is exclusively marine and contains a moderately diverse ammonite fauna, ranging from the Middle Toarcian to the Upper Aalenian. The ammonite fauna comprises 21 taxa, among them the new genus Shahrudites with two new species, Shahrudites asseretoi and S. stoecklini from the Middle Aalenian Bradfordensis Zone. The other ammonites from the Shemshak Formation at Tazareh (as elsewhere in North and Central Iran) are exclusively Tethyan in character and closely related to faunas from western and central Europe. An ammonite-based correlation of Toarcian–Aalenian successions of the eastern Alborz with time-equivalent strata of the Lut Block, part of the Central-East Iranian Microcontinent (ca. 500 km to the south), suggests a strong influence of synsedimentary tectonics during the deposition of the upper Shemshak Formation.  相似文献   

20.
Detailed structural work in the Sierra Alhamilla, SE Spain, shows that the Aguilón nappe, comprising Triassic and older metasedimentary rocks, is a fold-nappe. The most prominent set of small-scale folds changes from dominantly N-vergent in the upper, right-way-up limb to S-vergent in the greatly thinned lower limb. The nappe closes to the north, and must have been emplaced in this direction. Nappe formation was accompanied by small-scale folding and extensive solution-transfer producing a pronounced differentiated crenulation cleavage. These structures overprint an earlier set of folds and cleavage, and are overprinted in turn by late N-vergent structures. The lower limb of the nappe was thinned and disrupted during continued nappe transport.Pre-Triassic schist in the core of the nappe was affected by medium-grade metamorphism of probable post-Triassic age. The contact with low-grade Permo-Triassic sediments above and below the schist coincides with a distinct change in metamorphic grade. This contact may be a post-metamorphic extensional fault that is now folded around the nappe, which suggests that nappe formation was preceded by extensional faulting. This is consistent with gravity spreading as the driving process for nappe emplacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号