首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A database was compiled for the period 1977–2007 to assess the threat to life in the conterminous United States from nontornadic convective wind events. This study reveals the number of fatalities from these wind storms, their causes, and their unique spatial distributions. Nontornadic convective wind fatalities occur most frequently outdoors, in vehicles including aircraft, or while boating. Fatalities are most common in the Great Lakes and Northeast, with fewer fatalities observed in the central United States despite the climatological peak in severe thunderstorms in this region. Differences in fatality locations between tornadoes and nontornadic convective wind events highlight the unique combination of physical and social vulnerabilities involved in these deaths. Understanding these vulnerabilities is important to future reduction of nontornadic convective wind fatalities.  相似文献   

2.
Motor vehicles historically have been dangerous locations to shelter in during tornado events. Throughout the twentieth century, motor vehicle design has become safer while tornado forecasting has become better understood. Despite such advances, tornado fatalities in motor vehicles still occur today, and some events periodically result in high numbers of deaths (e.g., ten motor vehicle occupants were killed by a single tornado in Garland, Texas, in 2015). We seek to examine all US tornado-induced motor vehicle fatalities documented between 1991 and 2015. Our findings indicate that motor vehicle fatalities have not significantly changed during this study period. We attribute annual fatality totals to persons lacking awareness of impending dangers coupled with numbers of significant tornado events for a given year. We find most fatalities result when vehicles are lofted or passengers are ejected, and this most typically occurs at the EF3–EF5 intensity thresholds. Fatalities that occur at weaker tornado winds (EF0–EF2) are most often attributed to collapsing debris (mostly trees) on vehicles. Spatially, motor vehicle fatalities are greatest in the Deep South and southern Great Plains regions where overall tornado and nighttime tornado frequencies are greatest. Some of the largest motor vehicle fatality events have resulted from tornadoes not being distinctly visible to motorists; such events have been characterized by tornadoes occurring at night or by tornadoes not appearing as “classic funnels.”  相似文献   

3.
Fatal landslides in Europe   总被引:4,自引:3,他引:1  
Landslides are a major hazard causing human and large economic losses worldwide. However, the quantification of fatalities and casualties is highly underestimated and incomplete, thus, the estimation of landslide risk is rather ambitious. Hence, a spatio-temporal distribution of deadly landslides is presented for 27 European countries over the last 20  years (1995–2014). Catastrophic landslides are widely distributed throughout Europe, however, with a great concentration in mountainous areas. In the studied period, a total of 1370 deaths and 784 injuries were reported resulting from 476 landslides. Turkey showed the highest fatalities with 335. An increasing trend of fatal landslides is observed, with a pronounced number of fatalities in the latest period from 2008 to 2014. The latter are mostly triggered by natural extreme events such as storms (i.e., heavy rainfall), earthquakes, and floods and only minor by human activities, such as mining and excavation works. Average economic loss per year in Europe is approximately 4.7 billion Euros. This study serves as baseline information for further risk mapping by integrating deadly landslide locations, local land use data, and will therefore help countries to protect human lives and property.  相似文献   

4.
Status and Trends in Research on Deep-Water Gravity Flow Deposits   总被引:3,自引:0,他引:3  
Deep-water gravity flows are one of the most important sediment transport mechanisms on Earth. After 60 years of study,significant achievements have been made in terms of classification schemes,genetic mechanisms,and depositional models of deep-water gravity flows. The research history of deep-water gravity flows can be divided into five stages: incipience of turbidity current theory; formation of turbidity current theory; development of deep-water gravity flow theory; improvement and perfection of deep-water gravity flow theory; and comprehensive development of deep-water gravity flow theory. Currently,three primary classification schemes based on the sediment support mechanism,the rheology and transportation process,and the integration of sediment support mechanisms,rheology,sedimentary characteristics,and flow state are commonly used.Different types of deep-water gravity flow events form different types of gravity flow deposits. Sediment slump retransportation mainly forms muddy debris flows,sandy debris flows,and surge-like turbidity currents. Resuspension of deposits by storms leads to quasi-steady hyperpycnal turbidity currents(hyperpycnal flows). Sustainable sediment supplies mainly generate muddy debris flows,sandy debris flows,and hyperpycnal flows. Deep-water fans,which are commonly controlled by debris flows and hyperpycnal flows,are triggered by sustainable sediment supply; in contrast,deep-water slope sedimentary deposits consist mainly of debris flows that are triggered by the retransportation of sediment slumps and deep-water fine-grained sedimentary deposits are derived primarily from finegrained hyperpycnal flows that are triggered by the resuspension of storm deposits. Harmonization of classification schemes,transformation between different types of gravity flow deposit,and monitoring and reproduction of the sedimentary processes of deep-water gravity flows as well as a source-to-sink approach to document the evolution and deposition of deep-water gravity flows are the most important research aspects for future studies of deep-water gravity flows study in the future.  相似文献   

5.
Riedel  Jon L.  Sarrantonio  Sharon M. 《Natural Hazards》2021,106(3):2519-2544

We examine the magnitude, frequency, and precipitation threshold of the extreme flood hazard on 37 low-order streams in the lower Stehekin River Valley on the arid eastern slope of the North Cascades. Key morphometric variables identify the magnitude of the hazard by differentiating debris flood from debris flow systems. Thirty-two debris flow systems are fed by basins?<?6 km2 and deposited debris cones with slopes?>?10°. Five debris flood systems have larger drainage areas and debris fans with slopes 7–10°. The debris flood systems have Melton ruggedness ratios from 0.42–0.64 compared to 0.78–3.80 for debris flow basins. We record stratigraphy at seven sites where soil surfaces buried by successive debris flows limit the age of events spanning 6000 years. Eighteen radiocarbon ages from the soils are the basis for estimates of a 200 to1500-year range in recurrence interval for larger debris flows and a 450?±?50-year average. Smaller events occur approximately every 100 years. Fifteen debris flows occurred in nine drainage systems in the last 15 years, including multiple flows on three streams. Summer storms in 2010 and 2013 with peak rainfall intensities of 7–9 mm/h sustained for 8–11 h triggered all but one flow; the fall 2015 event on Canyon Creek occurred after 170 mm of rain in 78 h. A direct link between fires and debris flows is unclear because several recent debris flows occurred in basins that did not burn or burned at low intensity, and basins that burned at high intensity did not carry debris flows. All but one of the recent flows and fires occurred on the valley’s southwest-facing wall. We conclude that fires and debris flows are linked by aspect at the landscape scale, where the sunny valley wall has flashy runoff due to sparse vegetation from frequent fires.

  相似文献   

6.
在2008年5月12日汶川地震后的地震灾区暴发了许多泥石流灾害,其中以四川省绵竹市清平乡文家沟泥石流最为显著。文家沟原来不是泥石流沟,在汶川地震时由于滑坡形成的巨大的滑坡-碎屑流堆积体改变了文家沟的泥石流形成条件,在此后的3个雨季内,文家沟先后暴发了5次大规模和特大规模的泥石流灾害,其中以8.13文家沟泥石流规模和危害最大。8.13文家沟泥石流暴发时的总降雨量为227mm,泥石流持续时间约2.5h,泥石流总量约310×104m3;泥石流造成7人死亡,5人失踪,39人受伤,479户农房被掩埋,直接经济损失4.3亿元。5次大规模和特大规模的泥石流以及洪水仅带走了16%的可以很容易形成泥石流的滑坡-碎屑流堆积物,文家沟如再遭遇较大降雨还会暴发泥石流。即使在今后的雨季中暴发几次规模如8.13泥石流一样大的特大规模泥石流,文家沟在较大降雨下仍然可能暴发泥石流灾害,因此对文家沟泥石流的防治工作将是一个长期的工作。  相似文献   

7.
Every year, and in many countries worldwide, wildfires cause significant damage and economic losses due to both the direct effects of the fires and the subsequent accelerated runoff, erosion, and debris flow. Wildfires can have profound effects on the hydrologic response of watersheds by changing the infiltration characteristics and erodibility of the soil, which leads to decreased rainfall infiltration, significantly increased overland flow and runoff in channels, and movement of soil. Debris-flow activity is among the most destructive consequences of these changes, often causing extensive damage to human infrastructure. Data from the Mediterranean area and Western United States of America help identify the primary processes that result in debris flows in recently burned areas. Two primary processes for the initiation of fire-related debris flows have been so far identified: (1) runoff-dominated erosion by surface overland flow; and (2) infiltration-triggered failure and mobilization of a discrete landslide mass. The first process is frequently documented immediately post-fire and leads to the generation of debris flows through progressive bulking of storm runoff with sediment eroded from the hillslopes and channels. As sediment is incorporated into water, runoff can convert to debris flow. The conversion to debris flow may be observed at a position within a drainage network that appears to be controlled by threshold values of upslope contributing area and its gradient. At these locations, sufficient eroded material has been incorporated, relative to the volume of contributing surface runoff, to generate debris flows. Debris flows have also been generated from burned basins in response to increased runoff by water cascading over a steep, bedrock cliff, and incorporating material from readily erodible colluvium or channel bed. Post-fire debris flows have also been generated by infiltration-triggered landslide failures which then mobilize into debris flows. However, only 12% of documented cases exhibited this process. When they do occur, the landslide failures range in thickness from a few tens of centimeters to more than 6 m, and generally involve the soil and colluvium-mantled hillslopes. Surficial landslide failures in burned areas most frequently occur in response to prolonged periods of storm rainfall, or prolonged rainfall in combination with rapid snowmelt or rain-on-snow events.  相似文献   

8.
Viorel Ilinca 《Landslides》2014,11(3):505-512
This paper focuses on characteristics of debris flows from the lower part of the Lotru River basin (South Carpathians, Romania). The damage produced by these debris flows has included burial of agricultural land, roads covered by debris flows, and even the obstruction of the Lotru River. Simple statistical analysis has been used to emphasize the characteristics of the debris flow sites. The collected data show that heavy rainfall is the main triggering mechanism of debris flow events in the Lotru hydrographic basin. The daily rainfall data for this region show that important debris flow events generally occur when rainfall exceeds 40 mm in 24 h, while rainfall levels between 25 and 40 mm in 24 h result in hyperconcentrated flows. For 11 of 14 studied debris flow sites, the fan area is greater than the source area, probably due to the thickness of the regolith, which is up to 5–10 m deep. Both source area and deposition area are very dynamic. The retreat rate calculated for five debris flow sites ranges from 5 to 30 m in 30 years (from 1975 to 2005). Channel cross section measurements on one of the debris flows show that velocity values vary from 1.31 to 2.64 m/s; corresponding discharge values vary from 4 to 10.03 m3/s.  相似文献   

9.
A large number of slope movements occur in China annually. Especially, fatal landslides are the most hazardous, causing serious fatalities and significant socio-economic losses. In this study, we collected data on fatal landslides triggered by non-seismic effects from China’s geological environment information site and Ministry of Natural Resources of China for the period 2004–2016. Then, we carried out a statistical analysis of the data to explore the trend and spatiotemporal distribution of the fatal landslides, as well as the distribution of its losses in economic and fatality terms. In the studied period, a total of 4718 deaths were recorded as resulting from 463 landslide events. It represents a frequency of 36 events and an average of 363 deaths every year. Also, an increasing trend of such landslide is observed in the period 2011–2016 with hazard record improvement. But its economic loss has a decreasing proportion of all recorded non-seismic geohazard loss for this period. Even so, the total economic loss in the studied period is still enormous at $981.29 million. The spatial distribution of fatal landslides shows intensive clusters in southwestern and southern China due to the possible distinctive geological environment and precipitation conditions. The temporal distribution reveals significant association with the rainy season, with the largest quantity of events occurring between June and September. Among all the collected landslides during the studied period, 94.2% are associated with rainfall. This research gives a comprehensive recognition of fatal landslide damage and provides baseline information for landslide prevention and mitigation.  相似文献   

10.
根据高浓度黏性泥石流的观测资料,应用不同类型黏性泥石流的流变特性和流体结构的分类指标-流核比,对高浓度黏性泥石流堆积中的混杂层、筛积层和粗化层理结构进行了成因差异分析。侧重分析了砾石质点在高浓度黏性泥石流蠕动流场中作向上垂直运动的魏森伯效应,并在表面富集形成了筛积层的成因,及其它与粗化层结构的区别。  相似文献   

11.
The total area of debris flow territories of the Russian Federation accounts for about 10% of the area of the country. The highest debris flow activity areas located in Kamchatka-Kuril, North Caucasus and Baikal debris flow provinces. The largest debris flow events connected with volcano eruptions. Maximum volume of debris flow deposits per one event reached 500 × 106 m3 (lahar formed during the eruption of Bezymyanny volcano in Kamchatka in 1956). In the mountains of the Greater Caucasus, the maximum volume of transported debris material reached 3 × 106 m3; the largest debris flows here had glacial reasons. In the Baikal debris flow province, the highest debris flow activity located in the ridges of the Baikal rift zone (the East Sayan Mountains, the Khamar-Daban Ridge and the ridges of the Stanovoye Highland). Spatial features of debris flow processes within the territory of Russia are analyzed, and the map of Debris Flow Hazard in Russia is presented. We classified the debris flow hazard areas into 2 zones, 6 regions and 15 provinces. Warm and cold zones are distinguished. The warm zone covers mountainous areas within the southern part of Russia with temperate climate; rain-induced debris flows are predominant there. The cold zone includes mountainous areas with subarctic and arctic climate; they are characterized by a short warm period, the occurrence of permafrost, as well as the predominance of slush flows. Debris flow events are described for each province. We collected a list of remarkable debris flow events with some parameters of their magnitude and impact. Due to climate change, the characteristics of debris flows will change in the future. Availability of maps and information from previous events will allow to analyze the new cases of debris flows.  相似文献   

12.
The 2008 Wenchuan earthquake induced a large number of landslides, and a vast amount of loose landslide materials deposited on steep hill slopes or in channels. Such loose materials can become sources of deadly debris flows once triggered by storms. On 13 August 2010, a storm swept Yingxiu and its vicinity, triggering a catastrophic debris flow with a volume of 1.17?million?m3 in Xiaojiagou Ravine. The debris flow buried 1,100?m of road, blocked a river and formed a debris flow barrier lake. A detailed field study was conducted to understand the initiation mechanisms and runout characteristics of this debris flow. Two types of debris flows are identified, namely hill-slope debris flow and channelized debris flow. The hill-slope debris flow was triggered in the forms of firehose effect, rilling and landsliding, whereas the channelized debris flow was triggered in the form of channel-bed failure. This debris flow was a water?Crock flow since most particles were gravel, cobble or larger rocks and the fraction of silt and clay was less than 2%. Grain contact friction, pore-pressure effects and inertial grain collision were the three most important physical interactions within the debris flow. Such interactions yielded a smaller runout distance (593?m) compared with those of mud?Crock flows of similar size.  相似文献   

13.
余斌  杨凌崴  刘清华  常鸣 《地球科学》2020,45(4):1447-1456
泥石流形成区沟床宽度和颗粒粒径对沟床起动型泥石流的发生影响很大,在强烈地震影响区内显得尤为突出,但目前的泥石流预报中还没考虑到这两个因素,无法准确预测强震区泥石流的发生.在泥石流10 min和1 h精细化预报模型基础上,通过现场调查群发泥石流事件,结合汶川地震强烈影响区泥石流的演化特点,引入了泥石流形成区沟道宽度和颗粒粒径的影响,建立了改进的精细化泥石流10 min和1 h预报模型,并在贵州望谟打易和四川德昌群发泥石流、汶川地震强烈影响区的文家沟多次泥石流事件中获得了很好的验证结果,得出泥石流形成区的颗粒粒径代表泥石流的地质因子,泥石流形成区沟床宽度代表泥石流的地形因子之一,这2个因子在泥石流发生中的作用都非常重要;改进的精细化10 min和1 h预报模型以及临界值,可以用于强烈地震区和一般的泥石流预报.   相似文献   

14.
浙江省地形复杂,山地面积大,暴雨频繁,尤其近年来受台风影响,泥石流等山地灾害频发。本文通过浙江省泥石流的调查成果,综合分析区内泥石流发育特征。通过分析,浙江泥石流主要有如下独特的发育特征:沟床比降大,相对高差小,两侧山坡坡度大,流程短,流域面积小等;地质构造上:泥石流主要发育在全-强风化的火山碎屑岩区域,沿深大断裂成带状分布;泥石流三区特征:三区分界不明显,尤其流通区和堆积区难以区分等。本文初次系统分析总结了浙江省泥石流发育特征,对浙江省泥石流形成机理、泥石流防灾减灾等的进一步分析研究提供了科学的依据。  相似文献   

15.
汶川震区北川9.24暴雨泥石流特征研究   总被引:32,自引:1,他引:31  
2008年9月24日汶川震区的北川县暴雨导致区域性泥石流发生,这次9.24暴雨泥石流灾害导致了42人死亡,对公路和其他基础设施造成严重损毁。本研究采用地面调查和遥感解译方法分析地震与暴雨共同作用下的泥石流特征,获取的气象数据用于分析泥石流起动的临界雨量条件。本文探讨了研究区泥石流起动和输移过程,并根据野外调查,分析了泥石流形成的降雨、岩石和断层作用,特别是强降雨过程与物源区对泥石流发生的作用。根据应急调查发现北川县境内暴雨诱发的泥石流72处,其分布受岩石类型、发震断层和河流等因素控制。根据对研究区震前和震后泥石流发生的临界雨量和雨强的初步分析,汶川地震后,该区域泥石流起动的前期累积雨量降低了14.8%~22.1%,小时雨强降低25.4 %~31.6%。震区泥石流起动方式主要有二种,一是由于暴雨过程形成的斜坡表层径流导致悬挂于斜坡上的滑坡体表面和前缘松散物质向下输移,进入沟道后转为泥石流过程;二是消防水管效应使沟道水流快速集中,并强烈冲刷沟床中松散固体物质,导致沟床物质起动并形成泥石流过程。调查和分析发现沟内堆积的滑坡坝对泥石流的阻塞明显,溃决后可导致瞬时洪峰流量特别大。研究结果表明了汶川震区已进入一个新的活跃期。因此,应该开展对汶川地震区的泥石流风险评估和监测、早期预警,采取有效的工程措施控制泥石流的发生和危害。  相似文献   

16.
The post-earthquake debris flows in the Wenjia Gully led to the exposure of the shortcomings in the design of the original conventional debris flow mitigation system. A predicament for the Wenjia mitigation system is a large amount of loose material (est. 50 × 106 m3) that has been deposited in the gully by the co-seismic landslide, providing abundant source material for debris flows under saturation. A novel design solution for the replacement mitigation system was proposed and constructed, and has exhibited excellent performance and resilience in subsequent debris flows. The design was governed by the three-phase philosophy of controlling water, sediment, and erosion. An Early Warning System (EWS) for debris flow that uses real-time field data was developed; it issues alerts based on the probabilistic and empirical correlations between rainfall and debris flows. This two-fold solution reduces energy of the debris flow by combining different mitigation measures while minimizing the impact through event forecasting and rapid public information sharing. Declines in the number and size of debris flows in the gully, with increased corresponding rainfall thresholds and mean rainfall intensity-duration (I-D) thresholds, indicate the high efficacy of the new mitigation system and a lowered debris flow susceptibility. This paper reports the design of the mitigation system and analyzes the characteristics of rainfall and debris flow events that occurred before and after implementation of the system; it evaluates the effectiveness of one of the most advanced debris flow mitigation systems in China.  相似文献   

17.
About 127 debris flow gullies have been identified, and debris flows have been an important type of geological hazards in Luding County, affecting cities, towns, rural areas, scenic spots and human’s engineering projects, such as mining and waterpower utilizing equipments. In this summary paper, recent two catastrophic debris flow events occurred on June 30, 2005, in Chuni town, in the central of the county, and on August 11, 2005, in Hailuogou scenic spot, in the southwest of the county, respectively, are reviewed. The debris flow events are introduced on the basis of field investigation and RS interpretation and the triggering factors for flow occurrence are identified. Furthermore, the rainfall related to flow occurrence including antecedent rainfall and intraday rainfall is analyzed, and a power-law function which can be used as a basic warning line is established based on both antecedent effective rainfall and intraday rainfall. Then dynamic parameters such as flow velocity and flow discharge are calculated, respectively. Through comparison and discussion, some conclusions are made including (1) The antecedent rainfall played an important role for debris flows which generated predominately based on the slope-instability due to the saturated loose sediments; (2) Despite slower flow velocity and smaller magnitude, the slope-type debris flows just like 2005-6-30 debris flows usually lead to serious damages for the difficulty to forecast and to prevent; (3) The mistaken recognition on debris flow hazards and lack of prevention consciousness strengthen the hazard and damage degree. This research is of certain significance for the prevention and mitigation of debris flow hazards and for the planning of the town building and tourism development in the future.  相似文献   

18.
During the three flood seasons following the Wenchuan earthquake in 2008, two catastrophic groups of debris flow events occurred in the earthquake-affected area: the 2008-9-24 debris flow events, which had a serious impact on rebuilding; and the 2010-8-13/14 debris flow events, which destroyed much of the progress made in rebuilding. The Wenjia gully is a typical post-earthquake debris flow gully and at least five debris flows have occurred there. As far as the 2010-8-13 debris flow is concerned, the deposits of the Wenjia gully debris flow reached a volume of 3.1 × 106 m3 in volume and hundreds of newly built houses were buried. This study took the Wenjia gully debris flow as an example and discussed the formation and characteristics of post-earthquake debris flow on the basis of field investigations and a remote sensing interpretation. The conclusions drawn from the investigation and analysis were as follows: (1) Post-earthquake debris flows were a joint result of both the earthquake and heavy rainfall. (2) Gully incision and loose material provision are key processes in the initiation and occurrence of debris flows and a cycle can be presented as the following process: runoff—erosion—collapse—engulfment—debris flow—further erosion—further collapse—further engulfment—debris flow enlargement. (3) The amount of rainfall that triggered debris flows from the Wenjia gully was significantly less than the average daily rainfall, while the intraday rainfall threshold decreased by at least 23.3%. (4) The occurrence mechanism of Wenjia gully debris flow was an erosion type and there was a positive relationship between debris flow magnitude and rainfall, which fitted an exponential model. (5) There were five representative characteristics of Wenjia gully debris flow: the long duration of the occurring process; the long distance of deposition chain conversion during the process of damage; magnification in the scale of debris flow; and the high frequency of debris flow events.  相似文献   

19.
Engineered (structural) debris-flow mitigation for all creeks with elements at risk and subject to debris flows is often outside of the financial capability of the regulating government, and heavy task-specific taxation may be politically undesirable. Structural debris-flow mitigation may only be achieved over long (decadal scale) time periods. Where immediate structural mitigation is cost-prohibitive, an interim solution can be identified to manage residual risk. This can be achieved by implementing a debris-flow warning system that enables residents to reduce their personal risk for loss of life through timely evacuation. This paper describes Canada??s first real-time debris-flow warning system which has been operated for 2 years for the District of North Vancouver. The system was developed based on discriminant function analyses of 20 hydrometric input variables consisting of antecedent rainfall and storm rainfall intensities for a total of 63 storms. Of these 27 resulted in shallow landslides and subsequent debris flows, while 36 storms were sampled that did not reportedly result in debris flows. The discriminant function analysis identified as the three most significant variables: the 4-week antecedent rainfall, the 2-day antecedent rainfall, and the 48-h rainfall intensity during the landslide-triggering storm. Discriminant functions were developed and tested for robustness against a nearby rain gauge dataset. The resulting classification functions provide a measure for the likelihood of debris-flow initiation. Several system complexities were added to render the classification functions into a usable and defensible warning system. This involved the addition of various functionality criteria such as not skipping warning levels, providing sufficient warning time before debris flows would occur, and hourly adjustment of actual rainfall vs. predicted rainfall since predicted rainfall is not error-free. After numerous iterations that involved warning threshold and cancelation refinements and further model calibrations, an optimal solution was found that best matches the actual debris-flow data record. Back-calculation of the model??s 21-year record confirmed that 76% of all debris flows would have occurred during warning or severe warning levels. Adding the past 2 years of system operation, this percentage increases marginally to 77%. With respect to the District of North Vancouver boundaries, all debris flows occur during Warning and Severe Warnings emphasizing the validity of the system to the area for which it was intended. To operate the system, real-time rainfall data are obtained from a rain gauge in the District of North Vancouver. Antecedent rainfall is automatically calculated as a sliding time window for the 4-week and 2-day periods every hour. The predicted 48-h storm rainfall data are provided by the Geophysical Disaster Computational Fluid Dynamics Centre at the Earth and Ocean Science Department at the University of British Columbia and is updated every hour as rainfall is recorded during a given storm. The warning system differentiates five different stages: no watch, watch level 1 (the warning level is unlikely to be reached), watch level 2 (the warning level is likely to be reached), warning, and severe warning. The debris-flow warning system has operated from October 1, 2009 to April 30, 2010 and October 1, 2010 and April 30, 2011. Fortunately, we were able to evaluate model performance because the exact times of debris flows during November 2009 and January 2010 were recorded. In both cases, the debris flows did not only occur during the warning level but coincided with peaks in the warning graphs. Furthermore, four debris flows occurred during a warning period in November 2009 in the Metro Vancouver watershed though their exact time of day is unknown. The warning level was reached 13 times, and in four of these cases, debris flows were recorded in the study area. One debris flow was recorded during watch II level. There was no severe warning during the 2 years of operation. The current warning level during the wet season (October to April) is accessible via District of North Vancouver??s homepage (www.dnv.org) and by automated telephone message during the rainy season.  相似文献   

20.
After the 2008 Wenchuan earthquake, mountainous areas in SW China are recognized as a region with highly active and perilous landslides and debris flows. The frequent impacts of debris flow are a major threat to bridge piers located in debris flow gullies. It is an important issue for guaranteeing the safety of railway bridges in areas prone to hazardous debris flows. Previous research has achieved significant results characterizing the initiation and mechanisms for debris flow, and their interactions with some structures. However, there has been little research on the dynamic pressure of debris flow on bridge pier caused by different debris flows. In this study, the measurement and estimation of the impact pressure and dynamic behavior of debris flows on scaled bridge piers were conducted. Nine pressure sensors were used to measure the impact pressure of debris flows. Flow velocities and flow depths were determined at the end of a flume using a high-speed camera. The results show that the impact pressure differed between different types of debris flows. The distribution of impact pressures from high-viscosity debris flows indicated three layers, with different features in individual event. In comparison, a layered structure was not observed in low-viscosity debris flows. Based on dimensional analyses, the impact pressure depended on Froude number (Fr) and Reynolds number (Re). For low-viscosity debris flows, the dimensionless impact pressures were power functions of Fr, while for high-viscosity debris flows, the dimensionless impact pressures were power functions of both Re and Fr. The impact frequencies of low-viscosity and high-viscosity debris flows showed considerable differences based on spectral analysis. Compared to high-viscosity debris flows, low-viscosity debris flows were characterized by relatively high velocity, strong striking pressure, and high impact frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号