首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The large-eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) methodologies are used to simulate the air flow inside the container’s array geometry of the Mock Urban Setting Test (MUST) field experiment. Both tools are assessed and compared in a configuration for which the incident wind direction is perpendicular to the front array. The assessment is carried out against available wind-tunnel data. Effects of including small geometrical irregularities present in the experiments are analysed by considering LES and RANS calculations on two geometries: an idealized one with a perfect alignment and an identical shape of the containers, and a second one including the small irregularities considered in the experiment. These effects are assessed in terms of the local time-mean average and as well in terms of spatial average properties (relevant in atmospheric modelling) given for the velocity and turbulent fields. The structural flow properties obtained using LES and RANS are also compared. The inclusion of geometrical irregularities is found significant on the local time-mean flow properties, in particular the repeated flow patterns encountered in a perfect regular geometry is broken. LES and RANS provide close results for the local mean streamwise velocity profiles and shear-stress profiles, however the LES predictions are closer to the experimental values for the local vertical mean velocity. When considering the spatial average flow properties, the effects of geometrical irregularities are found insignificant and LES and RANS provide similar results.  相似文献   

3.
Flow over Hills: A Large-Eddy Simulation of the Bolund Case   总被引:6,自引:6,他引:0  
Simulation of local atmospheric flows around complex topography is important for several applications in wind energy (short-term wind forecasting and turbine siting and control), local weather prediction in mountainous regions and avalanche risk assessment. However, atmospheric simulation around steep mountain topography remains challenging, and a number of different approaches are used to represent such topography in numerical models. The immersed boundary method (IBM) is particularly well-suited for efficient and numerically stable simulation of flow around steep terrain. It uses a homogenous grid and permits a fast meshing of the topography. Here, we use the IBM in conjunction with a large-eddy simulation (LES) and test it against two unique datasets. In the first comparison, the LES is used to reproduce experimental results from a wind-tunnel study of a smooth three-dimensional hill. In the second comparison, we simulate the wind field around the Bolund Hill, Denmark, and make direct comparisons with field measurements. Both cases show good agreement between the simulation results and the experimental data, with the largest disagreement observed near the surface. The source of error is investigated by performing additional simulations with a variety of spatial resolutions and surface roughness properties.  相似文献   

4.
Atmospheric flow over complex terrain, particularly recirculation flows, greatly influences wind-turbine siting, forest-fire behaviour, and trace-gas and pollutant dispersion. However, there is a large uncertainty in the simulation of flow over complex topography, which is attributable to the type of turbulence model, the subgrid-scale (SGS) turbulence parametrization, terrain-following coordinates, and numerical errors in finite-difference methods. Here, we upgrade the large-eddy simulation module within the Weather Research and Forecasting model by incorporating the immersed-boundary method into the module to improve simulations of the flow and recirculation over complex terrain. Simulations over the Bolund Hill indicate improved mean absolute speed-up errors with respect to previous studies, as well an improved simulation of the recirculation zone behind the escarpment of the hill. With regard to the SGS parametrization, the Lagrangian-averaged scale-dependent Smagorinsky model performs better than the classic Smagorinsky model in reproducing both velocity and turbulent kinetic energy. A finer grid resolution also improves the strength of the recirculation in flow simulations, with a higher horizontal grid resolution improving simulations just behind the escarpment, and a higher vertical grid resolution improving results on the lee side of the hill. Our modelling approach has broad applications for the simulation of atmospheric flows over complex topography.  相似文献   

5.
The structure of turbulent flows along a transition between tall-forested canopies and forest clearings continues to be an active research topic in canopy turbulence. The difficulties in describing the turbulent flow along these transitions stem from the fact that the vertical structure of the canopy and its leaf area distribution cannot be ignored or represented by an effective roughness length. Large-eddy simulation (LES) runs were performed to explore the effect of a homogeneous variation in the forest leaf area index (LAI) on the turbulent flow across forest edges. A nested grid numerical method was used to ensure the development of a deep boundary layer above the forest while maintaining a sufficiently high resolution in the region close to the ground. It was demonstrated that the LES here predicted first-order and second-order mean velocity statistics within the canopy that agree with reported Reynolds-Averaged Navier–Stokes (RANS) model results, field and laboratory experiments. In the simulations reported here, the LAI was varied between 2 and 8 spanning a broad range of observed LAI in terrestrial ecosystems. By increasing the forest LAI, the mean flow properties both within the forest and in the clearing near the forest edge were altered in two fundamental ways: near the forest edge and into the clearing, the flow statistical properties resembled the so-called back-facing step (BFS) flow with a mean recirculation zone near the edge. Another recirculation zone sets up downstream of the clearing as the flow enters the tall forest canopy. The genesis of this within-forest recirculation zone can be primarily described using the interplay between the mean pressure gradients (forcing the flow) and the drag force (opposing the flow). Using the LES results, a simplified analytical model was also proposed to explain the location of the recirculation zone inside the canopy and its dependence on the forest LAI. Furthermore, a simplified scaling argument that decomposes the mean velocity at the outflow edge into a superposition of ‘exit flow’ and BFS-like flow with their relative importance determined by LAI was explored.  相似文献   

6.
There are two frameworks within which we can discuss turbulence energy in convective boundary layers. The first is the one provided by the Reynolds-averaged Navier–Stokes (RANS) energy equations, as interpreted by Osborne Reynolds in the late nineteenth century. The other, much newer framework is that provided by complex dynamical systems. The former gives prominence to the interpretation of local budgets of turbulence kinetic energy while the latter emphasizes the energy flows necessary to maintain turbulence in a statistically-steady state. It is argued that these frameworks constitute two incompatible paradigms, since the first localizes physical interpretation of the RANS kinetic energy budget while the second denies such a simple view. The local interpretation traces back to the way Reynolds himself interpreted his RANS energy equations, which interpretation is examined here and found to be faulty. We present a schematic model for energy flow in convective boundary layers from a complex dynamical systems’ perspective, and use it to re-interpret the RANS energy equation.  相似文献   

7.
A study of the neutrally-stratified flow within and over an array of three-dimensional buildings (cubes) was undertaken using simple Reynolds-averaged Navier—Stokes (RANS) flow models. These models consist of a general solution of the ensemble-averaged, steady-state, three-dimensional Navier—Stokes equations, where the k-ε turbulence model (k is turbulence kinetic energy and ε is viscous dissipation rate) has been used to close the system of equations. Two turbulence closure models were tested, namely, the standard and Kato—Launder k-ε models. The latter model is a modified k-ε model designed specifically to overcome the stagnation point anomaly in flows past a bluff body where the standard k-ε model overpredicts the production of turbulence kinetic energy near the stagnation point. Results of a detailed comparison between a wind-tunnel experiment and the RANS flow model predictions are presented. More specifically, vertical profiles of the predicted mean streamwise velocity, mean vertical velocity, and turbulence kinetic energy at a number of streamwise locations that extend from the impingement zone upstream of the array, through the array interior, to the exit region downstream of the array are presented and compared to those measured in the wind-tunnel experiment. Generally, the numerical predictions show good agreement for the mean flow velocities. The turbulence kinetic energy was underestimated by the two different closure models. After validation, the results of the high-resolution RANS flow model predictions were used to diagnose the dispersive stress, within and above the building array. The importance of dispersive stresses, which arise from point-to-point variations in the mean flow field, relative to the spatially-averaged Reynolds stresses are assessed for the building array.  相似文献   

8.
An attempt is made to compare results oflarge-eddy simulation (LES) in a convective boundarylayer using the model PALM with experimental data obtained from acoustic travel time tomography.This method provides two-dimensional data arrays, which are considered as more suitable forLES-validation than classical local orline-integrated measurements, because the tomographic data are area- or volume-averaged.For a quantitative comparison with experimental data in general, some prerequisites have to be considered: First of all, the initial and boundary conditions of the LES model have to be provided correctly by the experiment. Considering measurement errors, a sensitivity study was performed to investigate the influence of inaccurate initial and boundary conditions on the simulation results.This showed that for determining some boundary conditions, such as the surface temperature and the roughness length, high measurement accuracies are necessary, which are difficult to reach or which at least require considerable extra measurement efforts.The initial and boundary conditions provided by the Lindenberg experiment in 1999 turned out to be of insufficient accuracy to allow quantitative comparisons.However, a qualitative comparison was performed instead to investigate if the acoustic tomography method is a proper method for comparisons with LES models in general.It showed a good qualitative agreement with some quantitative differences. These differences can partly be explained by the sensitivity of the LES to initial and boundary conditions and by the limitations of the acoustic tomography.  相似文献   

9.
Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in the street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (\(H_\mathrm{d}/H_\mathrm{u}\)) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Overall, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. However, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon.  相似文献   

10.
11.
In large-eddy simulations (LES) of the atmospheric boundary layer (ABL), near-surface models are often used to supplement subgrid-scale (SGS) turbulent stresses when a major fraction of the energetic scales within the surface layer cannot be resolved with the temporal and spatial resolution at hand. In this study, we investigate the performance of both dynamic and non-dynamic eddy viscosity models coupled with near-surface models in simulations of a neutrally stratified ABL. Two near-surface models that are commonly used in LES of the atmospheric boundary layer are considered. Additionally, a hybrid Reynolds- averaged/LES eddy viscosity model is presented, which uses Prandtl’s mixing length model in the vicinity of the surface, and blends in with the dynamic Smagorinsky model away from the surface. Present simulations show that significant portions of the modelled turbulent stresses are generated by the near-surface models, and they play a dominant role in capturing the expected logarithmic wind profile. Visualizations of the instantaneous vorticity field reveal that flow structures in the vicinity of the surface depend on the choice of the near-surface model. Among the three near-surface models studied, the hybrid eddy viscosity model gives the closest agreement with the logarithmic wind profile in the surface layer. It is also observed that high levels of resolved turbulence stresses can be maintained with the so-called canopy stress model while producing good agreement with the logarithmic wind profile.  相似文献   

12.
Most natural landscapes are characterized by multiscale (often multifractal) topography with well-known scale-invariance properties. For example, the spectral density of landscape elevation fields is often found to have a power-law scaling behaviour (with a −2 slope on a log–log scale) over a wide span of spatial scales, typically ranging from tens of kilometres down to a few metres. Even though the effect of topography on the atmospheric boundary layer (ABL) has been the subject of numerous studies, few have focussed on multiscale topography. In this study, large-eddy simulation (LES) is used to investigate boundary-layer flow over multiscale topography, and guide the development of parametrizations needed to represent the effects of subgrid-scale (SGS) topography in numerical models of ABL flow. Particular emphasis is placed on the formulation of an effective roughness used to account for the increased aerodynamic roughness associated with SGS topography. The LES code uses the scale-dependent Lagrangian dynamic SGS model for the turbulent stresses and a terrain-following coordinate transformation to explicitly resolve the effects of the topography at scales larger than the LES resolution. The terrain used in the simulations is generated using a restricted solid-on-solid landscape evolution model, and it is characterized by a −2 slope of the elevation power spectrum. Results from simulations performed using elevation fields band-pass filtered at different spatial resolutions indicate a clear linear relation between the square of the effective roughness and the variance of elevation.  相似文献   

13.
Large-eddy simulations (LES) and Reynolds-averaged Navier–Stokes (RANS) computations of pollutant dispersion are reported for the Mock Urban Setting Test (MUST) field experiment flow. In particular we address the effects of incident wind angle deviation on the mean velocity and on the mean concentration fields. Both computational fluid dynamical methods are assessed by comparing the simulation results with experimental field data. The comparative analysis proposes to relate the plume deflection with the flow channelling effects. The results show that the plume deflection angle varies with the altitude. As the ground is approached the plume is shown to be almost aligned with the street canyon direction and independent of the incident wind directions considered. At higher altitudes well above the obstacles, the plume direction is aligned with the mean wind direction as in dispersion over flat terrain. The near-ground plume deflection is the consequence of a strong channelling effect in the region near the ground. The mean concentration profiles predicted by LES and RANS are both in good qualitative agreement with experimental data but exhibit discrepancies that can be partly explained by the influence of small incident wind angle deviation effects. Compared to RANS, LES predicts a higher channelling and thus a higher deflection of the plume. Results on the fluctuating intensity of the concentration obtained from LES show a satisfactory agreement with experiments. This information is not available from RANS for which only the mean concentration modelling is considered.  相似文献   

14.
To assist validation of the experimental data of urban pollution dispersion, the effect of an isolated building on the flow and gaseous diffusion in the wake region have been investigated numerically in the neutrally stratified rough-walled turbulent boundary layer. Numerical studies were carried out using Computational Fluid Dynamics (CFD) models. The CFD models used for the simulation were based on the steady-state Reynolds-Average Navier-Stoke equations (RANS) with κ-ε turbulence models; standard κ-ε and RNG κ-ε models. Inlet conditions and boundary conditions were specified numerically to the best information available for each fluid modeling simulation. A gas pollutant was emitted from a point source within the recirculation cavity behind the building model. The accuracy of these simulations was examined by comparing the predicted results with wind tunnel experimental data. It was confirmed that simulation using the model accurately reproduces the velocity and concentration diffusion fields with a fine-mish resolution in the near wake region. Results indicated that there is a good agreement between the numerical simulation and the wind tunnel experiment for both wind flow and concentration diffusion. The results of this work can help to improve the understanding of mechanisms of and simulation of pollutant transport in an urban environment.  相似文献   

15.
As part of the EUropean Cloud REsolving Modelling (EUCREM) model intercomparison project we compared the properties and development of stratocumulus as revealed by actual observations and as derived from two types of models, namely three-dimensional Large Eddy Simulations (LES) and one-dimensional Single Column Models (SCMs). The turbulence, microphysical and radiation properties were obtained from observations made in solid stratocumulus during the third flight of the first 'Lagrangian' experiment of the Atlantic Stratocumulus Transition Experiment (ASTEX). The goal of the intercomparison was to study the turbulence and microphysical properties of a stratocumulus layer with specified initial and boundary conditions.The LES models predict an entrainment velocity which is significantly larger than estimated from observations. Because the observed value contains a large experimental uncertainty no definitive conclusions can be drawn from this. The LES modelled buoyancy flux agrees rather well with the observed values, which indicates that the intensity of the convection is modelled correctly. From LES it was concluded that the inclusion of drizzle had a small influence (about 10%) on the buoyancy flux. All SCMs predict a solid stratocumulus layer with the correct liquid water profile. However, the buoyancy flux profile is poorly represented in these models. From the comparison with observations it is clear that there is considerable uncertainty in the parametrization of drizzle in both SCM and LES.  相似文献   

16.
This paper compares a number of one-dimensional closure models for the planetary boundary layer (PBL) that are currently in use in large-scale atmospheric models. Using the results of a large-eddy simulation (LES) model as the standard of comparison, the PBL models are evaluated over a range of stratifications from free convective to neutral and a range of surface shear stresses. Capping inversion strengths for the convective cases range from weakly to strongly capped. Six prototypical PBL models are evaluated in this study, which focuses on the accuracy of the boundary-layer fluxes of momentum, heat, and two passive scalars. One scalar mimics humidity and the other is a top-down scalar entrained into the boundary layer from above. A set of measures based on the layer-averaged differences of these fluxes from the LES solutions is developed. In addition to the methodological framework and suite of LES solutions, the main result of the evaluation is the recognition that all of the examined PBL parameterizations have difficulty reproducing the entrainment at the top of the PBL, as given by the LES, in most parameter regimes. Some of the PBL models are relatively accurate in their entrainment flux in a subset of parameter regimes. The sensitivity of the PBL models to vertical resolution is explored, and substantive differences are observed in the performance of the PBL models, relative to LES, at low resolution typical of large scale atmospheric models.  相似文献   

17.
Large-Eddy Simulation of Stably-Stratified Flow Over a Steep Hill   总被引:1,自引:1,他引:0  
Large-eddy simulation (LES) is used to simulate stably-stratified turbulent boundary-layer flow over a steep two-dimensional hill. To parametrise the subgrid-scale (SGS) fluxes of heat and momentum, three different types of SGS models are tested: (a) the Smagorinsky model, (b) the Lagrangian dynamic model, and (c) the scale-dependent Lagrangian dynamic model (Stoll and Porté-Agel, Water Resour Res 2006, doi:). Simulation results obtained with the different models are compared with data from wind-tunnel experiments conducted at the Environmental Flow Research Laboratory (EnFlo), University of Surrey, U.K. (Ross et al., Boundary-Layer Meteorol 113:427–459, 2004). It is found that, in this stably-stratified boundary-layer flow simulation, the scale-dependent Lagrangian dynamic model is able to account for the scale dependence of the eddy-viscosity and eddy-diffusivity model coefficients associated with flow anisotropy in flow regions with large mean shear and/or strong flow stratification. As a result, simulations using this tuning-free model lead to turbulence statistics that are more realistic than those obtained with the other two models.  相似文献   

18.
A large-eddy simulation (LES) with the dynamic Smagorinsky-Germano subgrid-scale (SGS) model is used to study the dispersion of solid particles in a turbulent boundary layer. Solid particles are tracked in a Lagrangian way. The instantaneous velocity of the surrounding fluid is considered to have a large-scale part (directly computed by the LES) and a small-scale part. The SGS velocity of the surrounding fluid is given by a three-dimensional Langevin model written in terms of SGS statistics at a mesh level. An appropriate Lagrangian correlation time scale is considered in order to include the influences of gravity and inertia of the solid particle. Inter-particle collisions and the influence of particles on the mean flow are also taken into account. The results of the LES are compared with the wind-tunnel experiments of Nalpanis et al. (1993 J Fluid Mech 251: 661–685) and of Tanière et al. (1997 Exp in Fluids 23:463–471) on sand particles in saltation and in modified saltation, respectively.  相似文献   

19.
The effect of sub-tree forest heterogeneity in the flow past a clearing is investigated by means of large-eddy simulation (LES). For this purpose, a detailed representation of the canopy has been acquired by terrestrial laser scanning for a patch of approximately 190 m length in the field site “Tharandter Wald”, near the city of Dresden, Germany. The scanning data are used to produce a high resolution plant area distribution (PAD) that is averaged over approximately one tree height (30 m) along the transverse direction, in order to simplify the LES study. Despite the smoothing involved with this procedure, the resulting two-dimensional PAD maintains a rich vertical and horizontal structure. For the LES study, the PAD is embedded in a larger domain covered with an idealized, horizontally homogeneous canopy. Simulations are performed for neutral conditions and compared to a LES with homogeneous PAD and recent field measurements. The results reveal a considerable influence of small-scale plant distribution on the mean velocity field as well as on turbulence data. Particularly near the edges of the clearing, where canopy structure is highly variable, usage of a realistic PAD appears to be crucial for capturing the local flow structure. Inside the forest, local variations in plant density induce a complex pattern of upward and downward motions, which remain visible in the mean flow and make it difficult to identify the “adjustment zone” behind the windward edge of the clearing.  相似文献   

20.
Two mass consistent models (MATHEW and MINERVE) and two dynamic linearized models (MS3DJH/3R and FLOWSTAR) are used to simulate the mean flow over two-dimensional hills of analytical shape and of varying slope. The results are compared with detailed wind tunnel data (RUSHIL experiment at US EPA). Different numerical experiments have been performed, varying input data and control parameters, to test the data-processing methodology and to evaluate the minimum input data (for mass consistent models only) necessary to obtain a reliable flow field. The models behave differently according to the physical assumptions made and numerical procedure used: an assessment is then made in order to identify the proper solution for the different conditions of topography and wind data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号