首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Summary ?Above orographically structured terrain considerable differences of the regional wind field may be identified during large-scale extreme wind events. So far, these regional differences could not be resolved by climate models. To determine the relationships between large-scale atmospheric conditions, the influence of orography, and the regional wind field, data measured in the upper Rhine valley within the framework of the REKLIP Regional Climate Project were analyzed and calculations were made using the KAMM mesoscale model. In the area of the upper Rhine valley, ratios of the wind velocity in the Rhine valley at 10 m above ground level, νval, and the large-scale flow velocity, νlar, are between νvallar ≈ 0.1 and νvallar ≈ 1. The νvallar ratio exhibits a strong dependence on thermal stratification, δ, and decreases from νvallar ≈ 1 at δ = 0 K m−1 to νvallar ≈ 0.2 at δ = 0.0075 K m−1. In areas, where the lateral mountainous border of the Rhine valley is interrupted, the νvallar ratio increases again with increasing stability or decreasing Froude number. This is obviously due to flow around the Black Forest under stable stratification. It is demonstrated by model calculations that a complex wind field develops in the Rhine valley at small Froude numbers (Fr < 1) irrespective of the direction of large-scale flow. The νvallar ratio is characterized by small values in the direct lee side (νvallar ≈ 0.2) and high values on the windward side of the lateral mountainous border of the Rhine valley (νvallar ≈ 0.8). Received October 22, 2001; revised June 18, 2002; accepted June 23, 2002  相似文献   

2.
A time series of microwave radiometric profiles over Arctic Canada’s Cape Bathurst (70°N, 124.5°W) flaw lead polynya region from 1 January to 30 June, 2008 was examined to determine the general characteristics of the atmospheric boundary layer in winter and spring. A surface based or elevated inversion was present on 97% of winter (January–March) days, and on 77% of spring (April–June) days. The inversion was the deepest in the first week of March (≈1100 m), and the shallowest in June (≈250 m). The mean temperature and absolute humidity from the surface to the top of the inversion averaged 250.1 K (−23.1°C), and 0.56 × 10−3 kg m−3 in winter, and in spring averaged 267.5 K (−5.6°C), and 2.77 × 10−3 kg m−3. The median winter atmospheric boundary-layer (ABL) potential temperature profile provided evidence of a shallow, weakly stable internal boundary layer (surface to 350 m) topped by an inversion (350–1,000 m). The median spring profile showed a shallow, near-neutral internal boundary layer (surface to 350 m) under an elevated inversion (600–800 m). The median ABL absolute humidity profiles were weakly positive in winter and negative in spring. Estimates of the convergence of sensible heat and water vapour from the surface that could have produced the turbulent internal boundary layers of the median profiles were 0.67 MJ m−2 and 13.1 × 10−3 kg m−2 for the winter season, and 0.66 MJ m−2 and 33.4 × 10−3 kg m−2 for the spring season. With fetches of 10–100 km, these accumulations may have resulted from a surface sensible heat flux of 15–185 W m−2, plus a surface moisture flux of 0.001–0.013 mm h−1 (or a latent heat flux of 0.7–8.8 W m−2) in winter, and 0.003–0.033 mm h−1 (or a latent heat flux of 2–22 W m−2) in spring.  相似文献   

3.
The following Henry's law constants (K H/mol2kg-2atm-1) for HNO3 and the hydrohalic acids have been evaluated from available partial pressure and other thermodynamic data from 0°–40°C, 1 atm total pressure: HNO 3 , 40°C–5.85×105; 30°C–1.50×106; 25°C–2.45×106; 20°C–4.04×106; 10°C–1.15×107; 0°C–3.41×107. HF, 40°C–3.2; 30°C–6.6; 25°C–9.61; 20°C–14.0; 10°C–32.0; 0°C–76. HCl, 40°C–4.66×105; 30°C–1.23×106; 25°C–2.04×106; 20°C–3.37×106; 10°C–9.71×106; 0°C–2.95×107. HBr, 40°C–2.5×108; 30°C–7.5×108; 25°C–1.32×109; 20°C–2.37×109; 10°C–8.10×109; 0°C–3.0×1010. HI, 40°C–5.2×108; 30°C–1.5×109; 25°C–2.5×109; 20°C–4.5×109; 10°C–1.5×1010; 0°C–5.0×1010. Simple equilibrium models suggest that HNO3, CH3SO3H and other acids up to 10x less soluble than HCl displace it from marine seasalt aerosols. HF is displaced preferentially to HCl by dissolved acidity at all relative humidities greater than about 80%, and should be entirely depleted in aged marine aerosols.  相似文献   

4.
We present results of direct aerosol radiative forcing over a French Mediterranean coastal zone based on one year of continuous observations of aerosol optical properties during 2005–2006. Monthly-mean aerosol optical depth at 440 nm ranged between 0.1 and 0.34, with high Angstrom coefficient (α > 1.2). The single scattering albedo (at 525 nm) estimated at the surface ranged between 0.7 and 0.8, indicating significant absorption. The presence of aerosols over the Mediterranean zone during summer decreases the shortwave radiation reaching the surface by as much as 26 ± 3.9 W m− 2, and increases the top of the atmosphere reflected radiation by as much as 5.2 ± 1.0 W m− 2. The shortwave atmospheric absorption translates to an atmospheric heating of 2.5 to 4.6 K day− 1. Concerted efforts are needed for investigating the possible impact of the increase in heating rate on the maintenance of heat-waves frequently occurring over this coastal region during summer time.  相似文献   

5.
Using high-speed cameras, we have recorded the leaders contained in four natural negative cloud-to-ground (CG) lightning flashes in the summers of 2006 and 2007 at Conghua, Guangdong, China. It was found that the downward negative leaders preceding the first return stroke could propagate at quite different speeds. In one flash, the average speed of the downward negative stepped leader with no branches is about 2.2 × 106 m s− 1, while that of the other 3 flashes are all of the order of 105 m s− 1 with multilevel branches. The luminosity of the leaders shows an increasing tendency in propagating downward to the ground. For the leaders preceding the subsequent strokes, although all of them exhibit high speeds as reported previously. One subsequent leader exhibits an increasing speed from 5.2 × 105 m s− 1 to 1.7 × 106 m s− 1 during its propagation from about 1.26 to 0.36 km above the ground, and its luminosity also increased. The speed and luminosity of a leader between subsequent strokes of a natural lightning appear to decrease as it developed downward. Its speed ranges from 1.1 × 106 to 1.1 × 105 m s− 1, with a height between 1.15 and 0.81 km above the ground.  相似文献   

6.
Daily and zonal (latitudinal belt) averages of heat and momentum fluxes were computed using bulk aerodynamic formulae, from the meteorological parameters measured onboard M. S. Thuleland during the sixth Indian scientific expedition to Antarctica (26th November, 1986 to 22nd March, 1987). Both estimates showed significant variations, the momentum flux showing the largest variation. The maximum values of sensible and latent heat fluxes were observed over the 30°–40° S and 10°–20° S zones during the southern summer and fall respectively while the minimum values of latent heat flux were observed in the 60°–70° S zone for both seasons. The sensible heat flux minimum was observed in the 50°°60° S and 60°–70° S zones for summer and fall, respectively. Higher momentum flux values over the 40°–50° S zone in summer shifted to the 50°–60° S zone during fall.  相似文献   

7.
Summary.  Using 9 years (1985–1993) data, final stratospheric warmings in the Southern Hemisphere are studied. Interannual variations in the onset date and the temperatures are noted. In 1985 the stratosphere was colder by about 5 K and the wave activity was less. This year the final warming got delayed. In contrast in 1988 the final warming occurred earlier when compared with the mean picture and the wave activity was more. An examination of Eliassen-Palm fluxes showed the important role of planetary waves in the wave-mean flow interaction. In the energetics the most spectacular change is the reduction of zonal kinetic energy. Before the warming the energy exchanges were Pz → Pe → Ke → Kz ← Pz and after the warming they were Pz ← Pe ← Ke → Kz ← Pz. The dramatic reduction of zonal kinetic energy seems to be due to two effects: the reduction in Ke → Kz conversion and the weakening of direct meridional circulation. Received October 3, 2001; revised June 5, 2002  相似文献   

8.
PM10 and heavy metal measurements in an industrial area of southern Italy   总被引:1,自引:0,他引:1  
Atmospheric particulate concentrations and heavy metal content are measured from March to July 2001 at an industrial site located in a rural zone of the southern Italy. PM10 samples are collected by a low-volume sampler and each sample is analysed by AAS techniques for its content of Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn. We measure also temperature, atmospheric pressure and relative humidity, and we collect anemometric data. The study purpose is the investigation of pollutant levels in an industrial area located in a rather unpolluted region and the characterization of the correlation structure among particulate concentrations, heavy metal content and local meteorological parameters. Data analysis is carried out by means of univariate and multivariate statistical methods. In the investigated period, the average value of PM10 daily concentrations (24 μg Nm− 3) does not exceed the national standard of 40 μg Nm− 3 and only nine values are higher than the European daily limit value of 50 μg Nm− 3. Particularly, the occurrence of two anomalous values (183 μg Nm− 3 in 3 March and 94 μg Nm− 3 in 22 June) seems to be related to no-local events as confirmed both by in situ data measured in the AQM network of Potenza city (about 10 km far from the study area) and by remote measurements performed in the same days. Regarding the heavy metal levels, we observe high levels of Cr (34 ng Nm− 3), Ni (85 ng Nm− 3) and Zn (214 ng Nm− 3) in agreement with the local industrial source pattern. The multivariate analysis, carried out using meteorological parameters as exogenous variables, allow to evaluate the role of the different variables as driving factors of the correlation structure among the metals.  相似文献   

9.
The absolute rate constants for the gas-phasereactions of the NO3 radical with a series ofaldehydes such as acetaldehyde, propanal, butanal,pentanal, hexanal and, heptanal were measured overthe temperature range 298–433 K, using a dischargeflow system and monitoring the NO3 radical byLaser Induced Fluorescence (LIF).The measured rate constants at 298 K for thereaction of NO3, in units of 10–14 cm3molecule–1 s–1, were as follows:acetaldehyde 0.32 ± 0.04, propanal 0.60 ± 0.06, butanal 1.46± 0.16, pentanal 1.75 ±0.06, hexanal 1.83 ± 0.36, and heptanal 2.37 ±0.42. The proposed Arrhenius expressions arek1 = (6.2 ± 7.5) × 10–11 exp[–(2826 ± 866)/T] (cm3 molecule–1s–1),k2 = (1.7 ± 1.0) × 10–11 exp[–(2250 ± 192)/T] (cm3 molecule–1s1), k3 =(7.6 ± 9.8) × 1011 exp[–(2466 ± 505)/T] (cm3 molecule–1s–1),k4 = (2.8 ± 1.4) × 10–11 exp[–(2189 ± 156)/T] (cm3 molecule–1s–1), k5 = (7.0 ± 1.8) ×10–11 exp [–(2382 ± 998)/T](cm3 molecule–1 s–1), andk6 = (7.8 ± 1.0) × 10–11 exp[–(2406 ± 481)/T](cm3 molecule–1 s–1).Tropospheric lifetimes for these aldehydes werecalculated at night and during the day for typicalNO3 and OH average concentrations and showed thatboth radicals provide an effective tropospheric sinkfor these compounds and that the night-time reactionwith the NO3 radical can be an important, if notdominant, loss process for these emitted organics andfor NO3 radicals.  相似文献   

10.
The concentration, radiocarbon (14C) and stable isotope (13C and 18O) content of CO have been determined in air samples collected across Russia (about 8,500 km) and along the Ob river during the summer of 1999 to study the CO sources and sinks. An instrumented carriage on the Trans-Siberian railway and a boat on the river Ob were used as atmospheric measurement platforms. In general, CO mixing ratios, CO stable isotope ratios, as well as the abundances of 14CO over West Siberia were similar to those found at remote northern hemispheric baseline monitoring stations. Identified sources of CO along the Ob appear to be connected to methane oxidation based on an inferred δ13Csource = −36.8 ± 0.6‰, while the value for δ18Osource = 9.0 ± 1.6‰ identifies it as burning. Thus flaring in the oil and gas production can be supposed to be a source. The extreme 13C depletion and concomitant 18O enrichment for two of the boat samples unambiguously indicates contamination by CO from combustion of natural gas (inferred values δ13Csource = −40.3‰ and δ18Osource = 17.5‰). For these two samples, that have strongly elevated 14CO concentrations, the industrial area near Tomsk is identified as a source area using meteorological calculations. Along the Trans-Siberian Railroad background CO was to various degrees contaminated with CO from methane combustion (δ13Csource = −35.7 ± 6.2‰ and δ18Osource = 10.3 ± 1.8‰). The impact of industrial burning was discernable in the vicinity of Perm-Kungur.  相似文献   

11.
The pH variation and chemical characteristics of rainwater were investigated from January 2006 to December 2006 at an urban site of Guangzhou, South China. The rainwater was typically acidic with a volume-weighted mean pH value of 4.49, which ranged from 3.52 to 6.28. The volume-weighted mean equivalent concentration of components followed the order: SO42− > Ca2+ > Cl > NH4+ > Na+ > NO3 > K+ > Mg2+ > F, indicating that SO42−, Cl and NO3 were the main anions, while Ca2+ and NH4+, were the main cations. Ca2+ and NH4+ were major neutralization constituents of the precipitation. Furthermore, correlation analysis and principal component analysis method were performed to identify possible common sources of major ions. Sources of the major ions were assessed based on enrichment factor method.  相似文献   

12.
Summary  Turbulent fluxes of CO2 were continuously measured by eddy correlation for three months in 1997 over a gramineous fen in a high-arctic environment at Zackenberg (74°28′12″N, 20°34′23″W) in NE-Greenland. The measurements started on 1 June, when there was still a 1–2 m cover of dry snow, and ended 26 August at a time that corresponds to late autumn at this high-arctic site. During the 20-day period with snow cover, fluxes of CO2 to the atmosphere were small, typically 0.005 mg CO2 m−2 s−1 (0.41 g CO2 m−2 d−1), wheres during the thawed period, the fluxes displayed a clear diurnal variation. During the snow-free period, before the onset of vegetation growth, fluxes of CO2 to the atmosphere were typically 0.1 mg CO2 m−2 s−1 in the afternoon, and daily sums reached values up to almost 9 g CO2 m−2 d−1. After 4 July, downward fluxes of CO2 increased, and on sunny days in the middle of the growing season, the net ecosystem exchange rates attained typical values of about −0.23 mg m−2 s−1 at midday and max values of daily sums of −12 g CO2 m−2 d−1. Throughout the measured period the fen ecosystem acted as a net-sink of 130 g CO2 m−2. Modelling the ecosystem respiration during the season corresponded well with eddy correlation and chamber measurements. On the basis of the eddy correlation data and the predicted respiration effluxes, an estimate of the annual CO2 balance the calender year 1997 was calculated to be a net-sink of 20 g CO2 m−2 yr−1. Received October 6, 1999 Revised May 2, 2000  相似文献   

13.
Spatial/temporal variabilities of rainwater constituents are examined based on soluble/insoluble trace elements, pH and electrical conductivity measurements in rainfall sampled during December 2003–May 2005 at two urban and two suburban sites in Mersin, an industrialized city of 850,000 inhabitants on the southern coast of Turkey. In the analyses, backward air mass trajectories for rainy days were used in addition to factor analyses, enrichment factors, phase distributions and correlations between trace elements. The pH varied from 4.8 to 8.5 with an average value of 6.2, reflecting a mainly alkaline regime. Mean concentrations of trace elements collected from urban and suburban sites are spatially variable. Based on the overall data, total concentrations of trace elements were ordered as Ca > Na > Fe > Al > Mg > K > Zn > Mn > Sr > Pb > Ni > Cr > Ba > Cu > Co > Cd. Mainly terrigeneous (Ca, Fe, Al) and, to a lesser extent, sea salt particles (Na, Mg) were shown to be the major source of trace elements. Excluding major cations, the solubilities of trace elements were found to be ordered as Sr > Zn > Ba > Mn > Cu > Ni > Cr > Fe > Al, confirming the lower solubility of crustal elements. Cd, Co and Pb were excluded from the above evaluation because of the low numbers of soluble samples allowing quantitative measurements. The solubilities of Al, Fe, Mn and particularly of Ni were found to be considerably lower than those reported for various sites around the world, most likely due to the effect of pH. During the entire sampling period, a total of 28 dust transport episodes associated with 31 red rain events were identified. Extremely high mean concentration ratios of Al (8.2), Fe (14.4) and Mn (13.1) were observed in red rain, compared to normal rain. The degree of this enhancement displayed a decrease from crustal to anthropogenic origin elements and the lowest enhancements were found for anthropogenic origin elements of Zn and Cd (both having a ratio of 1.1). Aerosol dust was found to be the main source of almost all analyzed elements in Mersin precipitation, regardless that they are crustal or anthropic derived elements. The magnitude of crustal source contribution to trace element budget of precipitation was at its highest levels for crustal originated elements, most probably due to much higher scavenging ratios of crustal elements compared to anthropogenic ones.  相似文献   

14.
We use a reduced complexity climate model with a three-dimensional ocean component and realistic topography to investigate the effect of stratification-dependent mixing on the sensitivity of the North Atlantic subpolar gyre (SPG), and the Atlantic meridional overturning circulation (AMOC), to idealized CO2 increase and peaking scenarios. The vertical diffusivity of the ocean interior is parameterized as κ ∼ N −α, where N is the local buoyancy frequency. For all parameter values 0 ≤ α ≤ 3, we find the SPG, and subsequently the AMOC, to weaken in response to increasing CO2 concentrations. The weakening is significantly stronger for α ≥ αcr ≈ 1.5. Depending on the value of α, two separate model states develop. These states remain different after the CO2 concentration is stabilized, and in some cases even after the CO2 concentration has been decreased again to the pre-industrial level. This behaviour is explained by a positive feedback between stratification and mixing anomalies in the Nordic Seas, causing a persistent weakening of the SPG.  相似文献   

15.
Based on the Stratospheric Aerosol and Gas Experiment (SAGE) II and the Halogen Occultation Ex-periment (HALOE) ozone profiles and the Total Ozone Mapping Spectrometer (TOMS) total ozone data sets,the characteristics and variations of the vertical distribution of stratospheric ozone covering the latitude bands of 50oN±5oN,40oN±5oN,30oN±5oN,and 20oN±5oN and the longitude range of 75-135oE are investigated.The results indicate that the ozone distribution pattern over China not only has general behaviors,but also has particular char-acteristics.In view of the situation that ozone distribu-tions have substantial deviation from zonal symmetry in northern China,the differences of the vertical ozone dis-tribution between the east and the west part of northern China are studied.The results indicate that during winter,spring,and autumn,in the latitude bands of 50oN±5oN,40oN±5oN,ozone concentrations in the eastern part (105 -135oE) are obviously higher than those of the west (75-105oE) at the altitudes of ozone density maximum and below;during summer,in the latitude band of 50oN±5oN,the east-west ozone profile difference is small,but in the latitude band of 40oN±5oN,the east-west total ozone difference becomes as large as 14.0 DU,and the east-west ozone profile difference mainly exists in the lowermost stratosphere and troposphere.  相似文献   

16.
Deposition of atmospheric particulate PCBs in suburban site of Turkey   总被引:2,自引:1,他引:2  
Dry deposition and air concentration samples were collected from July 2004 to May 2005 at a suburban site in Turkey. A water surface sampler (WSS) was used to measure directly the dry deposition flux of particulate polychlorinated biphenyls (PCBs) while a high volume air sampler (HVAS) was employed to collect air samples. Particulate PCB concentrations accounted for 15% of total PCBs (gas + particle phase) at the site. The overall particulate phase PCB flux ranged from 2 to 160 ng m− 2 d− 1 with an average of 46.3 ± 40.6 ng m− 2 d− 1. Forty one PCB congeners were targeted in the samples while twenty one congeners were found to be higher than detection limits in deposition samples. Fluxes for homolog groups ranged between 0.9 (7-CBs) and 21.0 (3-CBs) ng m− 2 d− 1. Measured dry deposition fluxes were lower than the ones usually reported for urban sites. Average PCB dry deposition velocity, calculated using flux values and concurrently measured atmospheric concentrations, was 1.26 ± 1.86 cm s− 1 depended on size distribution of particles, atmospheric PCB concentrations and meteorological conditions.  相似文献   

17.
 Annual precipitation, July and January temperatures were reconstructed from a continuous Holocene pollen sequence from the Middle Atlas, Morocco, using the best modern analogues method. The reconstructions show a clear difference between the early and late Holocene: from ∼10 ka to ∼6.5 ka the climate was drier and warmer than during the period since 6.5 ka. The average value of annual precipitation was ∼870 mm until 6.5 ka, then rose to ∼940 mm. Between 10 ka and 6.5 ka January and July temperatures were about 4 °C higher than the present. Both temperatures show a marked decrease between 7 ka and 6 ka. After 6.5 ka July and January temperatures fluctuated between 21 and 23 °C, and 2.5 and 5 °C respectively. January temperatures show a period of intermediate values (∼3.5 °C) between 4 ka and 5.5 ka. The reconstructed climate values generally match palaeolimnological data from the same core, which show five intervals of low lake level during the Holocene. They are also consistent with regional-scale COHMAP simulated palaeoclimate that shows contrasting patterns of rainfall variation between the northwesternmost part of Africa and the intertropical band. Received: 7 July 1997 / Accepted: 28 May 1998  相似文献   

18.
The Mediterranean has been identified as particularly vulnerable to climate change, yet a high-resolution temperature reconstruction extending back into the Medieval Warm Period is still lacking. Here we present such a record from a high-elevation site on Mt. Smolikas in northern Greece, where some of Europe’s oldest trees provide evidence of warm season temperature variability back to 730 CE. The reconstruction is derived from 192 annually resolved, latewood density series from ancient living and relict Pinus heldreichii trees calibrating at r1911–2015 = 0.73 against regional July–September (JAS) temperatures. Although the recent 1985–2014 period was the warmest 30-year interval (JAS Twrt.1961–1990 = + 0.71 °C) since the eleventh century, temperatures during the ninth to tenth centuries were even warmer, including the warmest reconstructed 30-year period from 876–905 (+ 0.78 °C). These differences between warm periods are statistically insignificant though. Several distinct cold episodes punctuate the Little Ice Age, albeit the coldest 30-year period is centered during high medieval times from 997–1026 (− 1.63 °C). Comparison with reconstructions from the Alps and Scandinavia shows that a similar cold episode occurred in central Europe but was absent at northern latitudes. The reconstructions also reveal different millennial-scale temperature trends (NEur = − 0.73 °C/1000 years, CEur = − 0.13 °C, SEur = + 0.23 °C) potentially triggered by latitudinal changes in summer insolation due to orbital forcing. These features, the opposing millennial-scale temperature trends and the medieval multi-decadal cooling recorded in Central Europe and the Mediterranean, are not well captured in state-of-the-art climate model simulations.  相似文献   

19.
To further investigate the influence of cloud base temperature, updraft velocity and precipitation particle constitution on cloud electrification, five thunderstorms in various regions of China were simulated by using the three-dimensional compressible hailstorm numerical model including inductive and non-inductive charging mechanisms. The results indicate that changes of cloud base temperature have an influence on the initial electrification. Comparison of the above cases shows that in the case of warm cloud base and moderate updraft velocity (< 20 m s−  1), active electrification occurred below the − 10 °C level before moving upward to the − 20 °C level. In contrast, when cloud base is cold and updraft velocity is intensive, the main charging region is at the − 20 °C or even higher level. In that case, the vertical extent of the main negative charge region becomes larger with the increase of cloud base temperature. Apart from the main dipolar or tripolar charge structure, some smaller charge regions with relatively high values of charge density may also appear. Frozen drops, originating mainly from supercooled raindrops, mainly get electrified through charging interactions with snow at or below the − 20 °C level. They are responsible for the negative charge region near the melting level at the initial stage of precipitation if there is a large supercooled raindrop content. Non-inductive charging during hail-snow collisions is rather weak, resulting in the charge density on hail of no more than − 0.01 nC m− 3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号