首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
We have considered the transport equation for radiative transfer to a problem in semi-infinite non-conservative atmosphere with no incident radiation and scattering albedo 0 < 1. Usint the Laplace transform and the Wiener-Hopf technique, we have determined the emergent intensity and the intensity at any optical depth. We have obtained theH-function of Dasgupta (1977) by equating the emergent intensity with the intensity at zero optical depth.  相似文献   

2.
In this note we derive an exact solution of transfer equation in a plane-parallel semiinfinite atmosphere with albedo >1, by the method of Laplace transform and Wiener-Hopf technique. The emergent intensityI(0, ) is obtained in terms of theH 0-functionH 0() (Das Gupta, 1978) for which some good approximations are given. Intensity at any depth is also obtained.I(0, )/I(0, 0) is plotted in graphs against [0,1], and shows a maximum which drops and shifts towards the origin as increases.  相似文献   

3.
Neutrinos couple through a weak neutral current to the density of matter, in particular to the neutron density. Density fluctuations, or phonons, in the neutron fluid may be emitted or absorbed by neutrinos passing through the matter. At high densities, temperatures and neutrino energies the neutrino mean free paths for phonon emission and absorption can be 106 cm. Significant changes in the neutrino momentum and energy accompany these processes. We present a model calculation for neutrino scattering by phonons, and representative numerical results for the neutrino mean free path and mean energy and momentum changes fork B T andE v both ranging from 1 to 27 MeV.Research supported by the National Research Council of Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号