首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
陕西金堆城斑岩钼矿床地质特征及成因探讨   总被引:25,自引:4,他引:25  
金堆城花岗斑岩在燕山期侵位于元古代熊耳群变细碧岩中,按其岩石化学特征应属高硅富钾的钙碱性系列岩石。钼矿化发育于斑岩体及其外接触带内,矿体由含钼石英细网脉组成,最大矿化深度约达1000m。围岩蚀变自斑岩体向外为:钾化、绢(云)英岩化→硅化→青磐岩化,其中以硅化最为强烈且与钼矿化关系最密切。气液包裹体与含子矿物多相包裹体常常共存,主要成矿温度为300—400℃。硫、氧和碳同位素特征表明,主要成矿阶段的成矿流体是以岩浆水为主的混合液,硫、钼主要来源于花岗岩浆。低f_(o2)、高f_(s2)的弱酸性还原条件以及成矿流体沸腾是辉钼矿沉淀的主要因素。矿床成因类型属斑岩型中高温热液钼矿床。  相似文献   

2.
大兴安岭岔路口斑岩钼矿床流体成分及成矿意义   总被引:1,自引:0,他引:1       下载免费PDF全文
岔路口超大型斑岩型钼矿床位于大兴安岭北段,以网脉状和角砾岩型矿化为主.该矿床经历了4个成矿阶段:Ⅰ.石英-钾长石;Ⅱ.石英-辉钼矿;Ⅲ.石英-多金属硫化物;Ⅳ.石英-萤石-方解石.包裹体的岩相学及激光拉曼研究揭示,石英斑晶内的熔体-流体包裹体中熔体成分有更长石和钠长石,为岩浆出溶作用形成;子矿物多相包裹体(S型)中含有钾盐、石盐、赤铁矿和石膏等子矿物,显示出成矿流体为高氧逸度.第Ⅰ成矿阶段包裹体有气液两相(L+V型)、富CO2三相(C型)和含石盐、钾盐、赤铁矿及硬石膏等子矿物的多相(S型)等类型,第Ⅱ成矿阶段除了有L+V型、C型以及含钾盐、石盐、黄铜矿和辉钼矿等子矿物多相(S型)外,还可以见到S型包裹体与气相包裹体(V型)共存;第Ⅲ成矿阶段以L+V型和含方解石的S型包裹体为主;第Ⅳ成矿阶段除见到L+V型包裹体外,还可以见到液相包裹体(L型).显微测温结果显示从早到晚,流体包裹体均一温度从530 ℃变为120 ℃、盐度从66.7% NaCl equiv变为1.2% NaCl equiv,呈现逐渐降低的趋势.群体包裹体成分显示各阶段均含有气相CO2,液相成分中Na+,K+,Ca2+,SO42-,Cl-含量很高,而F-含量极少.成矿流体总体属于富含CO2的高盐度、高氧逸度的NaCl-H2O-CO2体系,在流体演化过程中温度、氧逸度、盐度和CO2含量逐渐降低.温度、盐度、CO2含量逐渐降低及绢云母化影响了矿石沉淀.   相似文献   

3.
陕西省华县金堆城斑岩型钼矿床流体包裹体研究   总被引:1,自引:7,他引:1  
杨永飞  李诺  倪智勇 《岩石学报》2009,25(11):2983-2993
陕西省华县金堆城钼矿床位于东秦岭钼矿带西部,形成于燕山期大陆碰撞体制.矿体产出于金堆城花岗斑岩体内部及其内外接触带.流体成矿过程包括早、中、晚3个阶段,分别以石英-钾长石组合、石英-(钾长石)-多金属硫化物-(碳酸盐)组合和石英-碳酸盐组合为标志,矿石矿物主要沉淀于中阶段.早、中阶段石英中可见纯CO_2包裹体(PC型)、CO_2-H_2O型包裹体(C型)、水溶液包裹体(W型)和含子晶多相包裹体(S型),但晚阶段只发育水溶液包裹体(W型).早阶段C型和W型包裹体均一温度集中于280~370℃,盐度为5.68~11.05 wt%NaCl.eqv;中阶段C型和W型流体包裹体均一温度集中于170~270℃,盐度为5.14~12.63 wt%NaCl.eqv.早、中阶段石英中见S型包裹体,加热过程中子矿物不溶.晚阶段流体包裹体均一温度集中于110~1900C,盐度介于7.17%~11.22 wt%NaCl.eqv之间.估算的早、中阶段流体捕获压力分别为143~243MPa和22~115MPa,推测成矿深度约为2.2~8.1km.金堆城钼矿的成矿流体以富CO_2、贫Cl~-为特征.  相似文献   

4.
内蒙古呼扎盖吐钼矿床是得尔布干成矿带上新发现的一座斑岩型钼矿床,钼矿体分布在燕山早期花岗闪长岩岩体内及其流纹岩接触带中,矿床以辉钼矿化和黄铁矿化为主,伴随有铅锌矿化和少量的黄铜矿化。成矿过程主要分为4个阶段:硅化阶段、石英- 辉钼矿阶段、石英- 多金属硫化物阶段和石英- 方解石阶段。流体包裹体可分为富液相包裹体、富气相包裹体、含子矿物的多相包裹体和含CO2的三相包裹体4种类型。以主成矿阶段为研究重点,对不同成矿阶段(Ⅱ→Ⅳ阶段)矿脉中石英/方解石中的包裹体进行了显微测温和激光拉曼探针分析。结果显示:石英- 辉钼矿阶段,包裹体均一温度主要集中在280~400℃之间,盐度变化范围在2. 57%~51. 68%。该阶段富气相包裹体、含子矿物的多相包裹体和含CO2的三相包裹体共存,L型包裹体液相成分主要为H2O- NaCl,V型包裹体气相成分除H2O为主外,部分还含有CO2,含石盐子晶的三相包裹体,检测到不透明子矿物黄铜矿的峰值。发育铅锌矿化和黄铜矿化的石英- 多金属硫化物阶段,包裹体均一温度集中在180~280℃之间,盐度变化范围为0. 18%~9. 73%。成矿晚期石英- 方解石脉中仅发育L型的气- 液两相流体包裹体,均一温度集中在140~240℃之间,盐度变化范围为0. 35%~7. 17%。结合最新研究成果,本文认为该矿床初始流体是中等盐度和密度的岩浆流体,在主成矿阶段由于压力释放发生流体沸腾作用,成矿流体系统的物理化学条件和氧化- 还原环境发生骤变,导致辉钼矿和其他硫化物等成矿物质在脉状裂隙中发生卸载沉淀。  相似文献   

5.
陕西金堆城斑岩钼矿成矿过程中热及流体传输的计算模拟   总被引:4,自引:1,他引:4  
在对陕西金堆城斑岩钼矿成矿地质背景和矿床地质详细研究的基础上,运用定点等积测量方法,建立了成矿过程中渗透率分面概念模型。根据质量,动量,能量守恒定律,建立了控制微分方程组。运用有限元方法,求解数学模型,得到了热流体运移的流函数和温度分布值,进而求出流速和热流值。将前述理论应用于金堆城矿区成矿过程中温度场和流体场的研究,取得了满意的计算模拟结果。为进一步研究斑岩钼矿的形成过程,提供了有意义的信息。与  相似文献   

6.
黑龙江鹿鸣钼矿床位于小兴安岭-张广才岭多金属成矿带内,赋存于二长花岗岩体内。根据矿石组构、蚀变类型和脉体穿插关系,将鹿鸣钼矿床自早到晚划分为3个成矿阶段:1)钾硅化浸染状矿化阶段;2)硅化网脉状矿化阶段;3)绿泥石-碳酸盐化阶段。鹿鸣钼矿床包裹体类型复杂,盐水溶液包裹体、富气相包裹体、含CH4(CO2)包裹体和含子晶多相包裹体共存,其中盐水溶液包裹体均一温度集中于133~425℃,盐度为1.6%~16.1%Na Cleqv。富气相包裹体均一温度集中在243~500℃,盐度为1.2%~14.1%NaC leqv。含子晶多相包裹体最终均一温度为297~449℃,盐度为38.2%~53.1%NaC leqv。含CH4(CO2)包裹体经激光拉曼光谱分析证实其中以CH4为主,少数含微量的CO2,均一温度为334~437℃。硫同位素测试结果显示:δ34S变化范围在4.5‰~5.7‰,成矿流体中的硫主要来源于岩浆热液。氢、氧同位素分析数据投到δD-δ18OH2O图解中,投影点落在岩浆水附近并向大气降水飘移,可以推断主成矿期的成矿介质水为岩浆水并混有少量的大气降水。鹿鸣钼矿床主成矿期压力估算为30~90MPa,推测成矿深度为3~9km。成矿流体演化过程可能为岩浆房最先分离出一个单一相的高温、中等盐度的H2O-NaC l-CH4(CO2)超临界流体,后由于减压和不同流体的混入导致流体沸腾发生不混溶并捕获形成多种类型包裹体。随着成矿流体不断演化,成矿温度逐步降低,金属矿物也不断沉淀成矿。通过对鹿鸣钼矿床中流体包裹体的研究可知,与成矿有关的流体不是单一的岩浆分异的结果,也有大规模其他流体的混入,矿区复杂的地质构造环境也为钼成矿提供了条件。  相似文献   

7.
大黑山钼矿床位于张广才岭-小兴安岭成矿带南段,矿体主要赋存在花岗闪长岩和花岗闪长斑岩内。含矿石英脉中主要发育气液两相包裹体(W型)和含子矿物三相包裹体(S型),偶见含CO2包裹体。成矿早阶段含矿石英脉中主要发育W型、S型包裹体和少量含CO2包裹体,均一温度为208~443 ℃,盐度(w(NaCl))为2.9%~49.8%,流体密度为0.5~1.2 g·cm-3;主成矿阶段含矿石英脉中发育W型、S型包裹体和少量含CO2包裹体,子矿物为石盐和金属硫化物,均一温度为197~398 ℃,盐度为1.6%~43.9%,流体密度为0.5~1.1 g·cm-3;成矿晚阶段仅见气液两相包裹体(W型),均一温度为171~301 ℃、盐度为1.6%~19.8%,流体密度为0.6~0.9 g·cm-3。主成矿阶段流体包裹体类型多样,且具有相似的均一温度,压力范围为30~100 MPa,成矿深度约为4 km。成矿阶段早期流体沸腾作用和晚期流体混合作用是金属硫化物沉淀的主要机制。  相似文献   

8.
撒岱沟门斑岩型钼矿床位于华北板块北缘东段,矿体产于印支期二长花岗岩中,矿化类型以细脉状、网脉状和浸染状辉钼矿为主.流体包裹体岩相学显示,成矿前期的无矿石英脉和成矿期含钼石英脉中流体包裹体形成较好,以气液两相为主,存在少量的单相包裹体和三相包裹体.流体包裹体显微测温研究结果显示,成矿前期包裹体的均一温度为196.2~390.0℃,盐度5.70%~17.52%(NaCl当量);成矿期包裹体的均一温度为161.5~340.3℃,盐度在2.06%~13.29%(NaCl当量).激光拉曼光谱测试结果显示,成矿早期以H2O为主,存在少量CO2和CO32-;而成矿期包裹体成分中有H2O和CO2的两相包裹体、含CO2的三相包裹体、SO2和CH4气体.流体特征变化指示成矿流体从成矿早期到晚期,温压条件不断降低,从氧化环境向还原环境转变.成矿流体经历了沸腾作用、流体不混溶作用,并伴随着大气降水混入形成了典型大陆碰撞体系下的浆控高温热液-斑岩型钼矿床.  相似文献   

9.
岔路口超大型斑岩钼矿床位于大兴安岭北部,是目前中国东北地区最大的钼矿床,矿体赋存于中酸性杂岩体及侏罗系火山-沉积岩内,其中花岗斑岩、石英斑岩、细粒花岗岩与钼矿化关系密切.流体包裹体研究表明,岔路口矿床主要发育富液两相包裹体、富气两相包裹体和含子矿物多相包裹体.花岗斑岩石英斑晶中流体包裹体的形成温度集中在230 ~ 440℃和470~510℃两个温度区间,盐度分别介于0.7% ~ 53.7% NaCl eqv和6.2%~61.3% NaCl eqv两个区间;成矿早阶段钾长石-石英-磁铁矿脉中流体包裹体的形成温度集中在320~440℃、盐度介于4.2% ~ 52.3%NaCl eqv;成矿中阶段石英-辉钼矿脉和角砾岩中流体包裹体的形成温度集中在260~410℃、盐度介于0.4%~52.3% NaCleqv;成矿晚阶段石英-萤石-方铅矿-闪锌矿脉中流体包裹体的形成温度集中在170~320℃、盐度介于0.5% ~ 11.1% NaCleqv.成矿流体具高温、高盐度及高氧逸度的特征,总体上属于富F的H2O-NaCl±CO2体系.成矿流体的δ 18Ow值为-4.5‰~3.2‰,δDw值为-138‰~-122‰,表明成矿流体为岩浆水与雨水的混合流体.金属硫化物的δ34S值介于-1.9‰~+3.6‰,均值为+1.6‰,表明成矿物质主要来自深源岩浆.多期次的流体沸腾作用是该矿床的主要成矿机制.  相似文献   

10.
新疆东天山白山钼矿床流体包裹体研究   总被引:2,自引:3,他引:2  
白山钼矿位于东天山觉罗塔格成矿带东段,是新疆极具代表性的大型-超大型斑岩钼矿.根据矿物共生组合和脉体穿插关系,脉体发育顺序依次为:早期石英-钾长石脉、石英-钾长石-辉钼矿脉、石英-辉钼矿脉、石英-多金属硫化物脉和晚期石英-碳酸盐-萤石脉.早期石英-钾长石脉中主要发育纯CH4包裹体(PC型)、CH4-H2O型包裹体(C1型)和水溶液包裹体(W型),均一温度集中在320 ~420℃,盐度为1.98% ~ 8.79% NaCleqv;石英-钾长石-辉钼矿脉中发育含子晶包裹体(S型)和W型包裹体,均一温度集中在260~ 400℃,盐度为1.49%~8.65% NaCleqv;石英-辉钼矿脉和石英-多金属硫化物脉发育W型、S型和CO2-H2O型包裹体(C2型),均一温度分别为200~ 240℃和140 ~ 240℃,盐度分别为2.14% ~8.10% NaCleqv和0.33%~ 10.22% NaCleqv,不包括不熔子矿物的贡献;晚期石英-碳酸盐-萤石脉只发育W型包裹体,均一温度和盐度明显下降,分别为100~ 160℃和0.17%~4.86% NaCleqv.估算的石英-钾长石脉体和石英-多金属硫化物脉形成压力分别为105 ~ 221 MPa和15 ~ 285MPa.成矿流体由高温、富碳质、还原的岩浆流体向低温、低盐度、贫碳质的大气降水热液演化.成矿阶段温度下降,早期流体中的CH4还原HMoO4-的高价钼,从而形成辉钼矿,可能是导致成矿物质沉淀的重要因素.  相似文献   

11.
金堆斑岩钼矿是东秦岭超大型钼矿带内最重要钼矿床之一,该矿床的形成与中生代花岗斑岩有关,且岩体顶部发育了典型的钾长石-石英条纹岩。矿区内含脉率和裂隙发育程度可作为矿化强度的一个重要标志。  相似文献   

12.
金堆城斑岩钼矿床地质地球化学特征及成因   总被引:10,自引:1,他引:10  
金堆城斑岩钼矿是东秦岭超大型钼矿带内最重要钼矿床之一,该矿床的形成与中生代花岗斑岩有关,且岩体顶部发育了典型的钾长石石英条纹岩。矿区内含脉率和裂隙发育程度可作为矿化强度的一个重要标志。成矿流体研究表明主要成矿阶段温度为200°C±;成矿流体含盐度具有双配分模式特征,盐度介于275~425w(NaCl)eq%和061~17w(NaCl)%两个区间之内;成矿流体成分以富Cl-、K+、SO2-4、贫F-、Na+、HCO-3为特征。稳定同位素研究表明δ34S‰介于123~434之间;δ18O‰介于1183~859之间,δD‰介于5722~12069之间;稳定同位素数值说明成矿热液早期以岩浆热液为主,晚期有雨水加入  相似文献   

13.
黑龙江省砂宝斯金矿床成矿流体性质研究   总被引:4,自引:0,他引:4  
砂宝斯金矿床产于中侏罗统陆相碎屑岩中,金矿体严格受S-N向和NNW向断裂构造控制.矿体石英中流体包裹体较为发育,以气液包裹体为主.通过流体包裹体的研究认为:成矿流体属于Ca2+(K+、Na+)-SO42-(F-、Cl-)型,具有低盐度(0.8%~9.2%)、低密度(0.895g/cm3)、偏碱性(pH8.05~8.26)、高硫低氧(LogfO2值为-39.4~-39.2)和相对还原环境(Eh值为-0.71~-0.68)的特点:成矿温度为200~230℃、成矿压力为17.24MPa,成矿深度为0.575km;成矿流体主要来源于深部岩浆,有部分大气降水加入,是岩浆热液和大气降水的混合流体;Au主要是以Au-S配合物的形式迁移,成矿流体的压力、pH值降低和Eh值升高是导致Au沉淀的重要因素.  相似文献   

14.
在前人研究成果的基础上,对江西新余良山钼矿床的地质特征进行了详细研究,系统测试了矿床中石英脉型钼矿石样品的氢、氧、硫和铅同位素组成,进而探讨钼矿床的成矿流体性质以及成矿物质来源。良山钼矿床δD值变化范围-61‰~ -57.9‰,平均值-59.1‰;δ18OV-SMOW值变化于7.1‰~10.5‰,平均值9.2‰,流体的δ18OH2O值变化于-3.32‰~-0.52‰,平均值-1.52‰,表明成矿流体具有岩浆水和大气降水混合流体特征。硫化物的δ34SV-CDT值为-1.8‰~2.6‰,极差4.4‰,平均值1.12‰,其中黄铁矿δ34SV-CDT值为-1.8‰~2.6‰,辉钼矿δ34SV-CDT值为0.8‰~2.3‰,硫同位素表现为较小的正值特征,具有典型的岩浆硫组成特点。良山钼矿石中的矿石铅同位素206Pb/204Pb值为17.555~19.474,207Pb/204Pb值15.486~15.768,208Pb/204Pb值37.942~39.943,μ值9.35~9.7,ω值37.06~38.31,Th/U值3.8~3.96,矿石铅为混合铅,表明成矿物质为混合来源。良山钼矿床应为岩浆热液型-石英脉型钼矿床,是中生代华南板块板内构造演化区域金属成矿作用大爆发的产物。   相似文献   

15.
霍艳  李丹 《地质力学学报》2016,22(2):338-345
应用英国Linkam THNSG600型冷热台测试和前人的经验公式,对西藏波龙斑岩铜金矿床在岩浆晚期、磁铁矿-辉钼矿阶段、黄铜矿-黄铁矿阶段和硬石膏-黄铁矿阶段等4个成矿阶段利于主成矿元素Cu迁移的流体包裹体的一般特征及物理化学条件进行研究。研究结果表明,该矿床流体包裹体类型以含石盐和硫化物子矿物的三相包裹体为主,为高温(232~549 ℃)、低压(1.40×105~234.41×105 Pa)、高盐度(NaCl质量分数28.65%~52.16%)、中—高密度(1.0683~1.1598 g/cm3)的流体;随着成矿进程的发展,各阶段流体逸度和活度均逐渐降低,pH值和Eh值逐渐升高,铜主要以Cu(H2S)(HS)2-形式存在,说明Cu在高温酸性流体中易成矿。   相似文献   

16.
本文以阿西金矿床为例,研究地球化学界面对流体成矿的控制作用。研究发现,阿西金矿床流体成矿的最佳地示化学界面主要为:成矿环境条件变异界面(区域地球物理条件变异界面、地质条件突变界面),流体性质演介面(温度界面、压力界面、pH界面、Eh界面),流体-环境作用界面。地球化学界面是流体演化最强烈的部位,也是地质地球化学作用集中发生的主要场所,成矿元素往往在地球化学界面附近卸载成矿。  相似文献   

17.
江西金山金矿床成矿流体地球化学及矿床成因讨论   总被引:3,自引:0,他引:3       下载免费PDF全文
对金山韧性剪切带型金矿床石英及方解石中流体包裹体的研究表明:成矿流体具有中低温、低盐度和低密度的特征;富含Ca2 ,Mg2 ,SO42-,CO2等;主要来源有变质热流体、富含有机质的大气降水形成的热流体和深源流体;流体的性质在时间和空间上都有一定的变化,矿床的形成主要是两期流体成矿作用的结果,是热液与构造的耦合;不同种类流体的混合、单一流体不混溶分离作用和盐水体系中有机质的参与是矿床形成的关键因素.  相似文献   

18.
河南西峡石板沟金矿成矿流体地球化学及矿床成因讨论   总被引:3,自引:2,他引:3  
张德会  刘伟 《现代地质》1999,13(2):130-136
石板沟金矿是近年在豫西南发现的一个剪切带容矿的脉状金矿。根据流体包裹体地球化学研究,分析了矿床成矿流体地球化学特征,讨论了金的沉淀机制和矿床成因。构造蚀变岩型金矿的形成主要与热液蚀变作用有关,石英脉型金矿的形成,则可能主要与岩浆热液与变质热液的混合作用有关。矿质主要源自晋宁期岩浆岩,成矿流体和热能主要来自海西期花岗岩。矿床为剪切带容矿的中低温热液金矿床。  相似文献   

19.
山东省平度市大庄子金矿流体包裹体研究   总被引:4,自引:1,他引:4  
山东省平度市大庄子金矿含金硅化体及石英脉中流体包裹体发育程度一般,且粒度偏小,包裹体大小多为6~12μm,包裹体类型主要为气液二相包裹体、液相包裹体(LH2O LCO2),见少量三相包裹体(LH2O LCO2 GCO2).化学成分属K (Na )-SO4-2(Cl-)型,气相成分以H2O、CO2为主,含一定量CH4、CO、H2S等还原性气体.均一温度表明金矿的成矿温度为中温(200℃~260℃),成矿流体盐度低(1.05%~4.96%).成矿流体主要来源于岩浆水、变质水,并有大气降水的混合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号