首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
超新星SN 1987A的热光度演化──内部中子星的贡献   总被引:1,自引:1,他引:0  
本文介绍了超新星SN1987A爆发六年多来其热光度演化的研究情况.爆发后的前800天,观测的热光度曲线与由超新星爆发时合成的放射性元素的放射衰变加热模型符合得很好.但900天以后,观测的热光度曲线比考虑了所有放射性元素贡献后的理论曲线下降得还要缓慢.这可能表明有新的能源在起作用.我们认为这个新的能源可能是超新星爆发时产生的中子星的吸积.通过吸积超新星爆发时抛射气壳中小于逃逸速度的部分物质而增大SN1987A的热光度.这一模型能很好地解释900天以后的光度曲线的下降变级以及900至1200天之间光度曲线的凸起,这也为内部中子星的存在提供了间接的证据.  相似文献   

2.
在中央中子星吸积模型较好地解释了超新星SN1987A晚期光度演化的基础上,本文提出了SN1987A晚期X射线辐射的一种新的解释.利用模型计算出的吸积光度以及SN1987A膨胀气体包层的化学组分及分布,计算了出射的软X射线(0.52keV)光度的演化,并与观测作了比较.我们认为SN1987A晚期由中央中子星吸积产生的软X射线光度经过一段时间的增长后,将在4100天左右开始下降.  相似文献   

3.
Following the reasonable explanation of the evolution of the SN 1987A's bolometric luminosity at the later phase by the accretion model, we suggest that the observed soft X-ray originates in the accretion of the central neutron star. Results of our model calculation are consistent with the observations. We predict that the observed X-ray flux will increase only for a certain length of time, and will begin to decrease around day 4100.  相似文献   

4.
We present a new set of spectroscopic and photometric data extending the observations of SN 1997D to over 400 d after the explosion. These observations confirm the peculiar properties of SN 1997D, such as the very low abundance of 56Co (0.002 M) and the low expansion velocity of the ejecta (∼1000 km s−1). We discuss the implications of these observations for the character of the progenitor and the nature of the remnant, showing that a Crab-like pulsar or an accreting neutron star formed in the explosion of a low-mass progenitor should already have produced a detectable luminosity at this epoch, in contrast with photometric data. On the other hand, the explosion of a high-mass progenitor with the formation of a black hole is consistent with the available observations. The consequences of this conclusion regarding the nature of the explosion and the prospects of directly identifying the black hole are also addressed.  相似文献   

5.
We have collected short-timescale variability data of 47 blazars, estimated the masses of their central black holes and the sizes of their radiation regions at different wavebands, and made a statistical analysis on the calculated results. It is found that the central black hole mass of blazars falls in the range 107M to 1010M, and that the BL Lac objects and the flat-spectrum radio quasars have very different central black hole masses (the latter being generally greater), while they have very similar sizes of radiation regions in the infrared and γ-ray wavebands. Also, using the collected bolometric luminosity data, we have analyzed the relationship between the bolometric luminosity of blazars and their short-timescale variability, and it is concluded that the radiations from the radio-selected BL Lac objects (RBLs) and flat-spectrum radio quasars (FSRQs) are strongly beam-confined, while the effect of relativistic beaming is relatively small for the X-ray-selected BL Lac objects (XBLs).  相似文献   

6.
We use ideal axisymmetric relativistic magnetohydrodynamic simulations to calculate the spin-down of a newly formed millisecond,   B ∼ 1015 G  , magnetar and its interaction with the surrounding stellar envelope during a core-collapse supernova (SN) explosion. The mass, angular momentum and rotational energy lost by the neutron star are determined self-consistently given the thermal properties of the cooling neutron star's atmosphere and the wind's interaction with the surrounding star. The magnetar drives a relativistic magnetized wind into a cavity created by the outgoing SN shock. For high spin-down powers  (∼1051–1052 erg s−1)  , the magnetar wind is superfast at almost all latitudes, while for lower spin-down powers  (∼1050 erg s−1)  , the wind is subfast but still super-Alfvénic. In all cases, the rates at which the neutron star loses mass, angular momentum and energy are very similar to the corresponding free wind values (≲30 per cent differences), in spite of the causal contact between the neutron star and the stellar envelope. In addition, in all cases that we consider, the magnetar drives a collimated  (∼5–10°)  relativistic jet out along the rotation axis of the star. Nearly all of the spin-down power of the neutron star escapes via this polar jet, rather than being transferred to the more spherical SN explosion. The properties of this relativistic jet and its expected late-time evolution in the magnetar model are broadly consistent with observations of long duration gamma-ray bursts (GRBs) and their associated broad-lined Type Ic SN.  相似文献   

7.
8.
Recently discovered quasi-periodic oscillations in the X-ray brightness of low-mass X-ray binaries are used to derive constraints on the mass of the neutron star component and the equation of state of neutron star matter. The observations are compared with models of rapidly rotating neutron stars which are calculated by means of an exact numerical method in full relativity. For the equations of state we select a broad collection of models representing different assumptions about the many-body structure and the complexity of the composition of superdense matter. The mass constraints differ from their values in the approximate treatment by ∼10 per cent. Under the assumption that the maximum frequency of the quasi-periodic oscillations originates from the innermost stable orbit, the mass of the neutron star is in the range M ∼1.92–2.25 M. The quasi-periodic oscillation in the Atoll-source 4U 1820−30 in particular is only consistent with equations of state that are rather stiff at high densities, which is explainable, so far, only with pure nucleonic/leptonic composition. This interpretation contradicts the hypothesis that the protoneutron star formed in SN 1987A collapsed to a black hole, since this would demand a maximum neutron star mass below 1.6 M. The recently suggested identification of quasi-periodic oscillations with frequencies of about 10 Hz with the Lense–Thirring precession of the accretion disc is found to be inconsistent with the models studied in this work, unless it is assumed that the first overtone of the precession is observed.  相似文献   

9.
The gamma-ray burst GR170817 A associated with GW170817 is subluminous and subenergetic compared with other typical short gamma-ray bursts. It may be due to a relativistic jet viewed off-axis, or a structured jet or cocoon emission. Giant flares from magnetars may possibly be ruled out.However, the luminosity and energetics of GRB 170817 A are coincident with those of magnetar giant flares. After the coalescence of a binary neutron star, a hypermassive neutron star may be formed. The hypermassive neutron star may have a magnetar-strength magnetic field. During the collapse of this hypermassive neutron star, magnetic field energy will also be released. This giant-flare-like event may explain the luminosity and energetics of GRB 170817 A. Bursts with similar luminosity and energetics are expected in future neutron star-neutron star or neutron star-black hole mergers.  相似文献   

10.
We present the luminosity function of 90-μm-selected galaxies from the European Large Area ISO Survey (ELAIS), extending to z =0.3. Their luminosities are in the range 10965−2 L /L<1012, i.e. non-ultraluminous. From our sample of 37 reliably detected galaxies in the ELAIS S1 region from the Efstathiou et al. S 90100 mJy data base, we have found optical, 15-μm or 1.4-GHz identifications for 24 (65 per cent). We have obtained 2dF and UK Schmidt FLAIR spectroscopy of 89 per cent of identifications to rigid multivariate flux limits. We construct a luminosity function assuming that (i) our spectroscopic subset is an unbiased sparse sample, and (ii) there are no galaxies that would not be represented in our spectroscopic sample at any redshift. We argue that we can be confident of both assumptions. We find that the luminosity function is well described by the local 100-μm luminosity function of Rowan-Robinson, Helou & Walker. Assuming this local normalization, we derive luminosity evolution of (1+ z )2.45±0.85 (95 per cent confidence). We argue that star formation dominates the bolometric luminosities of these galaxies, and we derive comoving star formation rates in broad agreement with the Flores et al. and Rowan-Robinson et al. mid-infrared-based estimates.  相似文献   

11.
Three decades have passed since the supernova SN 1987A was observed in the Large Magellanic Cloud, inside which the product is most likely a neutron star (NS) formed in the core collapse explosion.Although lots of observations with sensitive radio telescopes have taken place, astronomers have not yet detected any evidence for a radio pulsar around the remnant of 1987A. To investigate pulsars inside the SN remnants, we calculate the cut-off oscillation frequency of the plasma around the presumed NS inside SN1987A, as shown to be about 33 GHz at present (2018 CE), which is much higher than the favorite “searching window” (e.g. L-band ∼ 1.4 GHz) of radio pulsar surveys that have been commonly exploited by astronomers. Since radio waves with frequencies lower than the plasma cut-off frequency cannot penetrate the SN remnant media, we suggest that astronomers use higher frequency bands to search for a pulsar in SN 1987A.Furthermore, with the expansion of SN remnant media, we find that the plasma cut-off frequency can decay to the L-band (1.4 GHz) in the future. The strategy of finding a pulsar of SN 1987A is that either the high frequency bands of radio telescopes, or the high energy detections at Gamma-ray and X-ray bands by space satellites are applied.  相似文献   

12.
The neutrino burst detected during supernova SN 1987A is explained in a strangeon star model, in which it is proposed that a pulsar-like compact object is composed of strangeons(strangeon:an abbreviation for "strange nucleon"). A nascent strangeon star's initial internal energy is calculated,with the inclusion of pion excitation(energy around 10~(53) erg, comparable to the gravitational binding energy of a collapsed core). A liquid-solid phase transition at temperature ~ 1-2MeV may occur only a few tens of seconds after core collapse, and the thermal evolution of a strangeon star is then modeled.It is found that the neutrino burst observed from SN 1987A can be reproduced in such a cooling model.  相似文献   

13.
Current theories of galaxy formation predict that spiral galaxies are embedded in a reservoir of hot gas. This gas is able to cool on to the galaxy, replenishing cold gas that is consumed by star formation. Estimates of the X-ray luminosity emitted in the cooling region suggest a bolometric luminosity of the order of 10×1041 erg s−1 in massive systems. We have used ROSAT PSPC data to search for extended X-ray emission from the haloes of three nearby, massive, late-type galaxies: NGC 2841, 4594 and 5529. We infer 95 per cent upper limits on the bolometric X-ray luminosities of the haloes of NGC 2841, 4594 and 5529 of 0.4, 1.2 and 3.8×1041 erg s−1 respectively. Thus, the true luminosity lies well below the straightforward theoretical prediction. We discuss this discrepancy and suggest a number of ways in which the theoretical model might be brought into agreement with the observational results. A possible solution is that the gravitational potentials of the dark matter haloes of these galaxies are weaker than assumed in the current model. Alternatively, the present-day accretion may be substantially less than is required on average to build the disc over the Hubble time. Our results are, however, based on only three galaxies, none of which is ideal for this kind of study. A larger data set is required to explore this important problem further.  相似文献   

14.
It is argued that the neutrino bursts registered on February 23.316 UT, 1987 signalized the transition of a fresh-borne neutron star into a superdense state. The neutron star is supposed to be formed approximately five hours before at February 23.12 UT in the supernova SN 1987a in the Large Magellanic Cloud.  相似文献   

15.
We present X-ray, broad-band optical and low-frequency radio observations of the bright type IIP supernova SN 2004et. The Chandra X-ray Observatory observed the supernova at three epochs, and the optical coverage spans a period of ∼470 d since explosion. The X-ray emission softens with time, and we characterize the X-ray luminosity evolution as   L X∝ t −0.4  . We use the observed X-ray luminosity to estimate a mass-loss rate for the progenitor star of  ∼2 × 10−6 M yr−1  . The optical light curve shows a pronounced plateau lasting for about 110 d. Temporal evolution of photospheric radius and colour temperature during the plateau phase is determined by making blackbody fits. We estimate the ejected mass of 56Ni to be  0.06 ± 0.03 M  . Using the expressions of Litvinova & Nadëzhin we estimate an explosion energy of  (0.98 ± 0.25) × 1051 erg  . We also present a single epoch radio observation of SN 2004et. We compare this with the predictions of the model proposed by Chevalier, Fransson & Nymark. These multiwavelength studies suggest a main-sequence progenitor mass of  ∼20 M  for SN 2004et.  相似文献   

16.
This work presents a possible detection mechanism for close, detached, neutron star–red dwarf binaries, which are expected to be the evolutionary precursors of low-mass X-ray binaries (LMXBs). Although this pre-low-mass X-ray binary (pre-LMXB) phase of evolution is predicted theoretically, as yet no such systems have been identified observationally. The calculations presented here suggest that the X-ray luminosity of neutron star wind accretion in a pre-LMXB system can be expected to exceed the intrinsic X-ray luminosity of the red dwarf secondary star. Furthermore, the temperature of the radiation emitted from the neutron star wind accretion process is expected, within the confines of a reasonable set of conditions, to lie within the detection range of X-ray satellites. Sources with X-ray luminosities greater than that expected for a red dwarf star, but the positions of which coincide with that of a red dwarf star, are then candidate pre-LMXB systems. These candidate systems should be surveyed for the radial velocity shifts that would occur as a result of the orbital motion of a red dwarf star within a close binary system containing a high-mass compact object.  相似文献   

17.
We present a numerical study of the hydrodynamics in the final stages of inspiral of a black hole–neutron star binary, when the binary separation becomes comparable to the stellar radius. We use a Newtonian three-dimensional smooth particle hydrodynamics (SPH) code, and model the neutron star with a soft (adiabatic index Γ=5/3) polytropic equation of state, and the black hole as a Newtonian point mass that accretes matter via an absorbing boundary at the Schwarzschild radius. Our initial conditions correspond to tidally locked binaries in equilibrium, and we have explored configurations with different values of the mass ratio q M NS M BH, ranging from q =1 to 0.1. The dynamical evolution is followed for approximately 23 ms, and in every case studied here we find that the neutron star is tidally disrupted on a dynamical time-scale, forming a dense torus around the black hole that contains a few tenths of a solar mass. A nearly baryon-free axis is present in the system throughout the coalescence, and only modest beaming of a fireball that could give rise to a gamma-ray burst would be sufficient to avoid excessive baryon contamination. We find that some mass (of the order of 10−3–10−2 M) may be dynamically ejected from the system, and could thus contribute substantially to the amount of observed r-process material in the galaxy. We calculate the gravitational radiation waveforms and luminosity emitted during the coalescence in the quadrupole approximation.  相似文献   

18.
We consider the evolution of a neutron star binary system under the effect of two factors: gravitational radiation and mass transfer between the components. Gravitational radiation is specified under the justified assumption of a circular orbit and point masses and in the approximation of a weak gravitational field at nonrelativistic velocities of the binary components. During the first evolutionary phase determined only by gravitational radiation, the neutron stars approach each other according to a simple analytical solution. The second evolutionary phase begins at the time of Roche-lobe filling by the low-mass component, when the second factor, mass transfer as a result of mass loss by the latter, also begins to affect the evolution. Under the simplest assumptions of conservative mass transfer and exact equality between the Roche-lobe radius and the radius of the low-mass neutron star, it is still possible to extend the analytical solution of the problem of evolution to its second phase. We present this complete solution at both phases and, in particular, give theoretical light curves of gravitational radiation that depend only on two dimensionless parameters (m t and δ 0). Based on the solution found, we analyze the theoretical gravitational signals from SN 1987A; this analysis includes the hypothesis about the rotational explosion mechanism for collapsing supernovae.  相似文献   

19.
We investigate the photometric properties of six super stellar clusters (SSCs) seen in both the optical and near-infrared Hubble Space Telescope images of the local ultraluminous starburst galaxy Arp 220. Three of the SSCs are located in the central 0.5-kpc region. The remaining three are in the circumnuclear region between 0.5 and 2.5 kpc from the centre. Comparing the observed spectral energy distributions (SEDs) of the SSCs with the Starburst99 models of Leitherer et al., we confirm that all three nuclear SSCs are heavily obscured     Considering the results from this comparison in conjunction with measurements of the near-infrared CO absorption index and of millimetre CO linewidths and luminosities, we estimate the ages of the nuclear SSCs to be 107–108 yr. The bolometric luminosity of the three nuclear SSCs is at most one-fifth of the total bolometric luminosity of Arp 220. On the other hand, the circumnuclear SSCs have little internal extinction     These contribute negligibly to the total bolometric luminosity.  相似文献   

20.
We present the results obtained by a detailed study of the extragalactic Z source LMC X-2, using broad-band Suzaku data and a large (∼750 ks) data set obtained with the proportional counter array (PCA) onboard the Rossi X-ray Timing Experiment ( RXTE ). The PCA data allow the study of the complete spectral evolution along the horizontal, normal and flaring branches of the Z track. Comparison with previous studies shows that the details of spectral evolution (like the variation of Comptonizing electron temperature) are similar to those of GX 17+2 but unlike those of Cyg X-2 and GX 349+2. This suggests that Z sources are a heterogeneous group, with perhaps LMC X-2 and GX 17+2 being members of a subclass. However, non-monotonic evolution of the Compton y parameter seems to be generic to all sources. The broad-band Suzaku data reveal that the case in which the additional soft component of the source is modelled as disc blackbody emission is strongly preferred over the one where it is taken to be a blackbody spectrum. This component, as well as the temperature of seed photons, does not vary when the source goes into flaring mode, and the entire variation can be ascribed to the Comptonizing cloud. The bolometric unabsorbed luminosity of the source is constrained to be  ∼2.23 × 1038 erg s−1  , which, if the source is Eddington-limited, implies a neutron star mass of  1.6 M  . We discuss the implications of these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号