首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe here a technique of determining the chord length and the relative height between two laser tracking stations using single-pass satellite ranging data over very short arcs. Numerical examples show that this technique can supplement the conventional technique which requires data over much longer arcs by providing a capability for checking the accuracy of the geodetic network of laser tracking stations.  相似文献   

2.
3.
We show that, when a natural satellite like Titan is invisible (e.g., due to an opaque atmosphere) its planetary orbit and its mass can be determined by tracking a spacecraft in close flybys. This is an important problem in the Cassini mission to the Saturnian system, which will be greatly improved by a good astrometric model for all its main components; in particular, an accuracy of a few hundred meters for the orbit of Titan is necessary to allow a measurement of its moment of inertia. The orbit of the spacecraft is the union of elliptical arcs, joined by short hyperbolic transitions: a problem of singular perturbation theory, whose solution leads to a matching condition between the inner hyperbolic orbit and the elliptical orbital elements. Since the inner elements are given in terms of the relative position and velocity of the spacecraft, accurate Doppler measurements in both regions can provide a satisfactory determination of Titan's position and velocity, hence of its Keplerian elements. The errors in this determination are discussed on the basis of the expected Allan deviation of the Doppler method; it is found that the driving errors are those in the elliptical arcs; the fractional errors in Titan's orbital elements are expected to be 10–7. It is also possible to measure the mass of the satellite; however, when the eccentricity e of the flybys is large, the mass and a scaling transformation are highly correlated and the fractional error in the mass is expected to be e times worse.  相似文献   

4.
The periodic motion of a test particle (dust, grain, or a larger body) around a pulsating star with a luminosity oscillation of small amplitude (featured by a small parameterB) is being studied. The perturbations of all orbital elements are determined to first order inB, by using Delaunay-type canonical variables and a method whose bases were put forth by von Zeipel. According to the value of the ratio oscillation frequency/dynamic frequency, three possible situations are pointed out: nonresonant (NR), quasi-resonant (QR), and resonant (R). The solution of motion equations shows that only in the (QR) and (R) cases there are orbital parameters (argument of periastron and mean anomaly) affected by secular perturbations. These solutions (which indicate a secularly stable motion in a first approximation) are valid over prediction times of orderB –1 in the (NR) case andB –1/2 in the (QR) and (R) cases. The theory may be applied to various astronomical situations.  相似文献   

5.
A new analytical method for calculating satellite orbital perturbations due to different disturbing forces is developed. It is based on the Poincaré method of small parameter but takes advantages of modern high-performance computers and of the tools of computer algebra. All perturbations proportional up to and including the 5th-order of small parameters are obtained. The method can precisely calculate the effects of all geodynamical forces on satellite motion given by the most up-to-date IAU and IERS models, such as non-central Earth gravity potential, precession and nutation of the geoequator, polar motion and irregularities in the Earth's rotation, effect of ocean and solid Earth tides, pole tide, and secular variations of gravity coefficients.Numerical tests prove the method's accuracy to be equivalent to 1–2 cm when calculating positions of high altitude geodetic satellites (like ETALON), and/or of GLONASS navigational spacecraft. The accuracy is stable over 1 year at least and comparable to that of the best tracking measurements of satellites.Positions of low altitude geodynamical satellites (like STARLETTE) by the analytical method are calculated to an accuracy of about 70cm over a month's interval. The method is developed for future use in GLONASS/GPS on-board ephemeris computation where it can improve the current scheme of their flight control.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

6.
The long-period perturbations in the orbit of Lageos satellite due to the earth's albedo have been found using a new analytical formalism. The earth is assumed to be a sphere whose surface diffusely reflects sunlight according to Lambert's law. Specular reflection is not considered. The formalism is based on spherical harmonics; it produces equations which hold regardless of whether the terminator is seen by the satellite or not. Specializing in the case of a realistic zonal albedo shows that Lageos' orbital semimajor axis changes periodically by only about a centimeter and the eccentricity by two parts in 105. The longitude of the node increases secularly by about 6×10–4 arc sec yr–1. The effect considered here can explain neither the secular decay of 1.1 mm day–1 in the semimajor axis nor the observed along-track variations in acceleration of order 2×10–12 ms–2.  相似文献   

7.
A new method is suggested for finding the preliminary orbit from three complete measurements of the angular coordinates of a celestial body developed by analogy with the classic Lagrange–Gauss method. The proposed method uses the intermediate orbit that we had constructed in an earlier paper based on two position vectors and the corresponding time interval. This intermediate orbit allows for most of the perturbations in the motion of the body. Using the orbital motion of asteroid 1566 Icarus as an example, we compare the results obtained by applying the classic and the new method. The comparison shows the new method to be highly efficient for studying perturbed motion. It is especially efficient if applied to high-precision observational data covering short orbital arcs.  相似文献   

8.
Starting from the Hamiltonian model for a solid Earth with an elastic mantle previously developped by the authors, analytical expressions are derived which give the nutation series corresponding to the plane perpendicular to the angular momentum vector, to the plane perpendicular to the rotational axis and to the equator of figure, as well as the series that give the polar motion. The effects of the different perturbations — solid Earth, centrifugal and tidal potentials — are calculated separately. The corrections due to the elasticity of the mantle, which mostly correspond to the Oppolzer terms, are calculated with an accuracy of 10–6 arc sec., given that the intrinsic observational accuracy has reached 0.01 mas.  相似文献   

9.
Because the precise measurement of the Martian gravitational field plays a significant role in the future Mars exploration program, the future dedicated Mars satellite-to-satellite tracking (Mars-SST) gravity mission in China is investigated in detail for producing the next generation of the Mars gravity field model with high accuracy. Firstly, a new semi-numerical synthetical error model of the cumulative Martian geoid height influenced by the major error sources of the space-borne instruments is precisely established and efficiently verified. Secondly, the deep space network in combination with the satellite-to-satellite tracking in the low-low (DSN-SST-LL) mode is a preferred design owing to the high precision determination of the gravity maps, the low technical complexity of the satellite system and the successful experiences with the Earth’s Gravity Recovery and Climate Experiment (GRACE) projects and the lunar Gravity Recovery and Interior Laboratory (GRAIL) program. Finally, the future twin Mars-SST satellites plan to adopt the optimal matching accuracy indices of the satellite-equipped sensors (e.g., \(10^{-7}\) m/s in the inter-satellite range-rate from the interferometric laser ranging system (ILRS), 35 m in the orbital position tracked by the DSN and \(3\times 10^{-11}\) m/s2 in the non-conservative force from the drag-free control system (DFCS)) and the preferred orbital parameters (e.g., the orbital altitude of \(100\pm 50\) km and the inter-satellite range of \(50\pm 10\) km).  相似文献   

10.
Expressions are given for the perturbations arising in the motion of close earth satelites if the orbital system introduced by Veis is used. These expressions include all terms with amplitudes greater than 10–8 for both long and short periods. Resonance problems can also occur under certain circumstances. Similar first order expressions obtained previously by Kozai are found to contain some errors.  相似文献   

11.
An error analysis of resonant orbits for geodesy indicates that attempts to use resonance to recover high order geopotential coefficients may be seriously hampered by errors in the geopotential. This effect, plus the very high correlations (up to .99) of the resonant coefficients with each other and the orbital period in single satellite solutions, makesindividual resonant orbits of limited value for geodesy. Multiple-satellite, single-plane solutions are only a slight improvement over the single satellite case. Accurate determination of high order coefficients from low altitude resonant satellites requires multiple orbit planes and small drift-periods to reduce correlations and effects of errors of non-resonant geopotential terms. Also, the effects of gravity model errors on low-altitude resonant satellites make the use of tracking arcs exceeding two to three weeks of doubtful validity. Because high-altitude resonant orbits are less affected by non-resonant terms in the geopotential, much longer tracking arcs can be used for them.  相似文献   

12.
Optical observations of the GEOS satellites were used to obtain orbital solutions with different sets of geopotential coefficients. The solutions were compared before and after modification to high order terms (necessary because of resonance) and then analyzed by comparing subsequent observations with predicted trajectories. The most important source of error in orbit determination and prediction for the GEOS satellites is the effect of resonance found in most published sets of geopotential coefficients. Modifications to the sets yield greatly improved orbits in most cases.The sets of coefficients analyzed are APL 3.5, NWL5E-6, Köhnlein (1967), Rapp (1967), Kaula (1967), Smithsonian Astrophysical Observatory (SAO)M-1 (1966), SAO AGU (1969), SAO COSPAR (1969) and SAO 1969 Standard Earth. The SAO 1969 models generally give better orbital fits and prediction results than the other models above. However these models can be improved by corrections to resonant coefficients.The results of these comparisons suggest that with the best optical tracking systems and gravity models, satellite position error due to gravity model uncertainty can reach 50–100 m during a heavily observed 5–6 day orbital arc. If resonant coefficients are estimated, the uncertainty is reduced considerably.  相似文献   

13.
In this paper of the series, elliptic expansions in terms of the sectorial variables j j introduced recently in Paper IV (Sharaf, 1982) to regularise highly oscillating perturbations force of some orbital systems will be established analytically and computationally for the seventh and eighth categories. For each of the elliptic expansions belonging to a category, literal analytical expressions for the coefficients of its trigonometric series representation are established. Moreover, some recurrence formulae satisfied by these coefficients are also established to facilitate their computations, numerical results are included to provide test examples for constructing computational algorithms.  相似文献   

14.
Using the rectangular equations of motion for the restricted three-body problem a comparison is made of the Encke and Cowell methods of integration. Each set of differential equations is integrated using Taylor series expansions where the coefficients of the powers of time are determined by recurrence relationships. It is shown that for fairly highly eccentric orbits in which the perturbing force is less than one thousandth of the two-body force the Encke method achieves a considerable saving in machine time. This is also true for almost circular orbits when low or moderate accuracy is required. When very high accuracy is required, however, the Cowell method is faster unless the perturbing force is less than 10–6 of the two-body force. There is little difference in the accuracy of the two methods, the Cowell method being slightly more accurate when a low or moderate accuracy criterion is imposed.  相似文献   

15.
In this paper of the series, elliptic expansions in terms of the sectorial variables j (i) introduced recently in Paper IV (Sharaf, 1982) to regularize highly oscillating perturbations force of some orbital systems will be established analytically and computationally for the fifth and sixth categories. For each of the elliptic expansions belonging to a category, literal analytical expressions for the coefficients of its trigonometric series representation are established. Moreover, some recurrence formulae satisfied by these coefficients are also established to facilitate their computations; numerical results are included to provide test examples for constructing computational algorithms.  相似文献   

16.
The gravity field dedicated satellite missions like CHAMP, GRACE, and GOCE are supposed to map the Earth's global gravity field with unprecedented accuracy and resolution. New models of the Earth's static and time-variable gravity fields will be available every month as one of the science products from GRACE. A method for the efficient gravity field recovery is presented using in situ satellite-to-satellite observations at altitude and results on static as well as temporal gravity field recovery are shown. Considering the energy relationship between the kinetic energy of the satellite and the gravitational potential, the disturbing potential observations can be computed from the orbital state vector, using high-low GPS tracking data, low–low satellite-to-satellite GRACE measurements, and data from 3-axis accelerometers. The solution method is based on the conjugate gradient iterative approach to efficiently recover the gravity field coefficients and approximate error covariance up to degree and order 120 every month. Based on the monthly GRACE noise-only simulation, the geoid was obtained with an accuracy of a few cm and with a resolution (half wavelength) of 160 km. However, the geoid accuracy can become worse by a factor of 6–7 because of spatial aliasing. The approximate error covariance was found to be a very good accuracy measure of the estimated coefficients, geoid, and gravity anomaly. The temporal gravity field, representing the monthly mean continental water mass redistribution, was recovered in the presence of measurement noise and high frequency temporal variation. The resulting recovered temporal gravity fields have about 0.3 mm errors in terms of geoid height with a resolution of 670 km.  相似文献   

17.
A complete analytical dynamic theory for the motion of Nereid has been constructed, accurate to approximately 0.01 arc second over several hundred years. The solution uses the Lie transform approach advanced by Deprit and is consistent with respect to the magnitudes of the disturbing functions, including all perturbations to an accuracy of 10–8 relative to the two-body potential (oblateness and third-body). Multiple short-period variables in the third-body perturbations are related via the ratio of their mean motions, reducing the number of independent variables. Extensive use is made of expansions giving trigonometric functions of the true anomaly as analytical Fourier series in the mean anomaly. Initial constants and mass parameters come from the data obtained during the Voyager II encounter with Neptune in 1989.  相似文献   

18.
The characteristics of gravitational bursts from active galactic nuclei, and globular clusters are obtained for three astrophysical situations:(i) scattering of stars by massive black holes residued at the centers of galaxies and globular clusters; (ii) the close encounters of stars in the nuclear regions of these objects; (iii) scattering of stars by black holes of stellar mass containing in the stellar population of galactic nuclei and clusters. The most effective source of gravitational bursts appears to be a scattering of stars by the massive central black holes which produces the bursts with dimensionless amplitudeh10–19–10–21 and frequencies from 10–1 to 10–5 Hz. The characteristics obtained correspond to the possiblities of a future gravitational-wave experiment with use of laser Doppler tracking of interplanetary spacecrafts.  相似文献   

19.
The orbit of the Pageos 1 balloon satellite has been investigated in detail over the early part of the balloon's lifetime. The analysis herein focuses on how Pageos's orbit was affected by direct solar and albedo radiation pressure. Near the end of the second year of the satellite's lifetime, anomalous behavior was found in the orbital acceleration. This behavior may be the result of a change in the shape of the satellite: Pageos's original spherical shape had become slightly oblate, spinning about a minor axis and precessing about the direction to the sun. In fact, we have been able to represent this effect quite well by accounting for a small component of force in the plane perpendicular to the sun and allowing this component to rotate about the solar direction. By analyzing the balloon-inflation process, attained with sublimating compounds, and the consequent variation of the satellite's mass due to leakage through the holes caused by micrometeoroid bombardment, we have evaluated the near-earth micrometeoroid-particle flux, which turns out to be 5×10–8 cm–2 sec–1. With the assumptions we made for the satellite's area-to-mass ratio and reflection coefficient, we would need a solar constant of 1.95 cal cm–2 min–1 to give a best-fit to our data.  相似文献   

20.
Radio systems with all sky viewing antennas at 151 MHz were operating at 5 widely spaced stations over the period 1970–1973, during which 19 Vela -ray bursts were detected. The records were analysed for each Vela time but no radio coincidences were recorded. A new experiment in the radio band operating at 408 MHz with similar objectives is now under construction and will be described.Five radiometers at 10 GHz have been tracking the Perseus cluster of galaxies for over one year. The supernova reported on 1 March in Perseus occurred during our oberving time but failed to give evidence from prompt emission in excess to 8×10–11 erg cm–2 event–1, for event durations 0.3–100 s.Paper presented at the COSPAR Symposium on Fast Transients in X- and Gamma-Rays, held at Varna, Bulgaria, 29–31 May, 1975.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号