首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contact aureole developed in siliceous carbonates surrounding the Beinn an Dubhaich granite, Skye, shows textural and stable isotope evidence for infiltration of aqueous fluids during both prograde and retrograde metamorphism. Strongly depleted isotope compositions of reaction-product calcite correlate with high silica and fluorine contents, demonstrating a strong link between isotopic alteration and metasomatism by fluids with a significant magmatic component, even at the margins of the aureole. The oxygen and carbon isotope compositions of the carbonates form a linear cluster with a positive slope of about five, consistent with the depletion of isotope compositions by the infiltration of magmatic and/or meteoric fluids. Rayleigh fractionation during devolatilization played a minor role in determining the final isotope composition. Stable isotope compositions of coexisting calcite–dolomite pairs show varying amounts of isotopic disequilibrium, which correlate with the inferred fluid infiltration mechanism. Much of the calcite in dolostones is the product of infiltration-driven reactions along fractures, and is greatly depleted isotopically relative to the host dolomite, especially at talc grade. At higher grades the calcite–dolomite fractionation is smaller, probably due to both increased fluid–rock interaction and a greater tendency for fluid infiltration to be pervasive on the grain-scale. Limestones generally show near-equilibrium fractionation of oxygen and carbon owing to the overwhelming compositional influence of the host calcite. Veins formed during late-stage hydrothermal circulation have strongly 18O-depleted compositions relative to the host rock. No small-scale spatial patterns to the isotopic depletion were observed, but the extent of fluid infiltration was greatest in the west of the aureole. Fluid infiltration was clearly highly heterogeneous, with no evidence of a consistent flow direction. It is not possible to determine fluid fluxes or flow directions from one-dimensional flow models based on continuum flow in the Beinn an Dubhaich aureole.  相似文献   

2.
This study provides a regional framework within which studies of ore-related dolomite and dolomite cements may be placed. Fluid inclusion data indicate the presence of three distinct fluids following early dolomitization: 1) a ubiquitous low-temperature, higher salinity fluid found in saddle dolomite; 2) a low-temperature, lower salinity fluid limited to sub-Waulsortian and Waulsortian carbonates; and 3) a higher temperature, lower salinity fluid found in Waulsortian and supra-Waulsortian rocks. Similar fluids have been reported in ore-associated minerals and postmineralization dolomite (Type 1) and in ore-stage carbonates and sphalerite (Types 2 and 3). The halogen geochemistry of included fluids indicates genesis from evaporated seawater. Type 1 fluids are enriched in chloride relative to bromide, reflecting a component of salinity derived via dissolution of halite or from dehydration of seawater. These data suggest that dolomitization and mineralization of Mississippian rocks in the Midlands requires both regionally extensive and localized fluid flow.  相似文献   

3.
An integrated approach consisting of fracture analysis, petrography, carbon, oxygen and strontium‐isotope analyses, as well as fluid‐inclusion micro‐thermometry, led to a better understanding of the evolution of fluid–rock interactions and diagenesis of the Upper Permian to Upper Triassic carbonates of the United Arab Emirates. The deposited carbonates were first marked by extensive early dolomitization. During progressive burial, the carbonates were affected by dolomite recrystallization as well as precipitation of vug and fracture‐filling dolomite, quartz and calcite cements. After considerable burial during the Middle Cretaceous, sub‐vertical north–south oriented fractures (F1) were cemented by dolomite derived from mesosaline to hypersaline fluids. Upon the Late Cretaceous maximum burial and ophiolite obduction, sub‐vertical east–west fractures (F2) were cemented by dolomite (Dc2) and saddle dolomite (Ds) derived from hot, highly saline fluids. Then, minor quartz cement has precipitated in fractures from hydrothermal brines. Fluid‐inclusion analyses of the various diagenetic phases imply the involvement of increasingly hot (200°C) saline brines (20 to 23% NaCl eq.). Through one‐dimensional burial history numerical modelling, the maximum temperatures reached by the studied rocks are estimated to be in the range of 160 to 200°C. Tectonically‐driven flux of hot fluids and associated diagenetic products are interpreted to have initiated during the Late Cretaceous maximum burial and lasted until the Oligocene–Miocene compressional tectonics and related uplift. The circulation of such hydrothermal brines led to partial dissolution of dolomites (Dc2 and Ds) and to precipitation of hydrothermal calcite C1 in new (mainly oriented north–south; F3) and pre‐existing, reactivated fractures. The integration of the obtained data confirms that the diagenetic evolution was controlled primarily by the interplay of the burial thermal evolution of the basin and the regional tectonic history. Hence, this contribution highlights the impacts of regional tectonics and basin history on diagenetic processes, which may subsequently affect reservoir properties.  相似文献   

4.
四川盆地东北部三叠系飞仙关组是我国重要的天然气储集层,优质储层形成机制直接与碳酸盐岩成岩作用、尤其是白云岩化作用相关,但飞仙关组碳酸盐岩在锰含量、锶含量、阴极发光性等特征上反映其成岩过程与经典成岩理论相悖;碳酸盐岩的锶同位素组成和锰、锶含量的关系也表明与大气水有关的成岩过程和作为重要储集岩的结晶白云岩的形成机制无关,传统的白云岩化机制难以解释结晶白云岩的成因。具有海源色彩的高锶、低锰成岩流体在很大程度上控制了飞仙关组碳酸盐的成岩作用,其来源与成因值得进一步关注,控制其运移、封存和发生水—岩反应的时空机制有待回答。整个海相三叠纪时间段盆地尺度碳酸盐岩和蒸发岩的沉积地球化学研究、尤其是不同结构组分碳酸盐的锶同位素组成、锶和锰含量研究(包括碳酸盐岩中不同结构组分的阴极发光性研究),可为四川盆地东北部飞仙关组碳酸盐岩成岩作用(尤其是白云岩化作用和作为重要储集岩的结晶白云岩的成因研究),天青石矿床成因研究和四川盆地三叠系深层富钾、锶、硼、溴卤水的成因研究提供重要的线索。  相似文献   

5.
Most vein minerals deposited in fractures of the Jialingjiang Formation from Libixia section,Hechan area include a large amount of saddle dolomite and accompanying celestite,calcite and fluorite.This study analyzed the nature,source,evolution of the fluids by plane-light petrography,fluid-inclusion methods,cathodoluminescence images,and stable isotopic compositions.The homogenization temperatures of two-phase aqueous fluid inclusions in dolomite range between100 and 270℃.Combined with theδ~(18)O data,it is suggested that the fluid responsible for the precipitation of fracture fillings haveδ~(18)O values between 10‰and 18‰(relative to SMOW).The saddle dolomite and the accompanying minerals were the result of activity of dense brines at elevated temperatures.Moreover,analysis shows that the fluid was derived from a mixture of marine-derived brine and deeper circulating flow.This fluid was enriched in Sr during diagenesis and formed celestite in fracture and for regional mineralization.Dissolution of saddle dolomite was attributed to the cooling of Mg/Ca-decreased fluids,which may relate to a leaching of gypsum to celestite in surrounding carbonates.  相似文献   

6.
Using the clumped isotope method, the temperature of dolomite and calcite formation and the oxygen isotopic composition (δ18Ow) of the diagenetic fluids have been determined in a core taken from the Arab‐D of the Ghawar field, the largest oil reservoir in the world. These analyses show that while the dolomites and limestones throughout the major zones of the reservoir recrystallized at temperatures between ca 80°C and 100°C, the carbonates near the top of the reservoir formed at significantly lower temperatures (20 to 30°C). Although the δ18O values of the diagenetic fluids show large variations ranging from ca <0‰ to ca +8‰, the variations exhibit consistent downhole changes, with the highest values being associated with the portion of the reservoir with the highest permeability and porosity. Within the limestones, dolomites and dolomites associated with the zone of high permeability, there are statistically significant different trends between the δ18Ow values and recrystallization temperature. These relationships have different intercepts suggesting that fluids with varying δ18Ow values were involved in the formation of dolomite and limestone compared to the formation of dolomite associated with the zone of high permeability. These new data obtained using the clumped isotope technique show how dolomitization and recrystallization by deep‐seated brines with elevated δ18Ow values influence the δ18O values of carbonates, possibly leading to erroneous interpretations unless temperatures can be adequately constrained.  相似文献   

7.
Magnesite, siderite and dolomite are characteristic alteration minerals occurring in Miocene hanging wall rocks of dacitic composition which host the Kuroko orebodies. These carbonates generally occur in a more stratigraphically upper horizon than chlorite alteration zone surrounding the orebodies. The Mg/(Mg+Fe) ratios of the carbonates decrease from the central alteration zone to marginal zone. The Mg/(Mg+Fe) ratios of carbonates and chlorite positively correlate. The δ18O and δ13C values of magnesite, siderite and dolomite positively correlate with each other and lie between the igneous and marine carbonate values. The petrographic, isotopic and fluid inclusion characteristics and thermochemical modelling calculations indicate that magnesite and dolomite formed in the central zone close to the orebodies due to the interaction of hydrothermal solutions with the biogenic marine carbonates. Calcite formed further from the orebodies from hydrothermal fluids which did not contain a biogenic marine carbon component. The compositional and textural relationships indicate that superimposed alterations (chlorite alteration and carbonate alteration) occurred in hanging wall rocks. The mode of occurrences and the Mg/(Mg+Fe) ratios of magnesite and dolomite occurring in hanging wallrocks are useful in the exploration for concealed volcanogenic massive sulfide-sulfate deposits. Received: 9 September 1997 / Accepted: 23 September 1997  相似文献   

8.
Vein-controlled retrograde infiltration of H2O-CO2 fluids into Dalradian epidote amphibolite facies rocks of the SW Scottish Highlands under greenschist facies conditions resulted in alteration of calcite-rich marble bands to dolomite and spatially associated 18O enrichment of about 10%. on a scale of metres. Fluid inclusion data indicate that the retrograde fluid was an H2O-salt mixture with a low CO2 content, and that the temperature of the fluid was about 400d? C. Detailed petrographic and textural (backscattered electron imaging) studies at one garnet-grade locality show that advection of fluid into marbles proceeded by a calcite-calcite grain edge flow mechanism, while alteration of non-carbonate wall-rock is associated with veinlets and microcracks. Stable isotopic analysis of carbonates from marble bands provides evidence for advection of isotopic fronts through carbonate wall-rocks perpendicular to dolomite veins, and fluid fluxes in the range 2.4–28.6 m3/m2 have been computed from measured advection distances. Coincidence of isotope and reaction fronts is considered to result from reaction-enhanced kinetics of isotope exchange at the reaction front. Front advection distances are related to the proportion of calcite to quartz in each marble band, with the largest advection distance occurring in nearly pure calcite matrix. This relationship indicates that fluid flow in carbonates is only possible along fluid-calcite-calcite grain edges. However, experimental constraints on dihedral angles in calcite-fluid systems require that pervasive infiltration occurred in response to calcite dissolution initiated at calcite-calcite grain junctions rather than to an open calcite pore geometry. The regional extent of the retrograde infiltration event has been documented from the high δ18O of dolomite-ankerite carbonates from veins and host-rocks over an area of least 50 × 50 km in the SW Scottish Highlands. Isotopically exotic 18O-rich retrograde fluids have moved rapidly upwards through the crust, inducing isotopic exchange and mineral reaction in wall-rocks only where lithology, pore geometry or mineral solubilities, pressure and temperature have been appropriate for pervasive infiltration to occur.  相似文献   

9.
A thick, areally extensive subsurface sequence of Upper Devonian carbonates occurs on the Barbwire Terrace in the Canning Basin of Western Australia. It is a platform sequence in which most of the shallow water lithologies have been thoroughly dolomitized. Slightly deeper water marls have remained as limestones. The major, regional dolomite type in the sequence is not restricted to peritidal lithologies and forms large thicknesses of dolomite (up to 600 m) with no primary calcite. A small volume of evaporitic, supratidal dolomite is present at one location. This dolomite is derived from highly saline fluids developed in an arid supratidal environment. Replacement dolomite of the regional dolomite type has a xenotopic form, with undulose extinction, and irregular crystal boundaries. In addition, saddle dolomite cements appear to have precipitated contemporaneously with the major phase of replacement dolomite. This suggests the regional dolomite type was precipitated at slightly elevated temperatures. Dolomitized stylolites and cements appear to indicate that dolomitization occurred after cementation and pressure solution. Geochemically, the synsedimentary supratidal and regional dolomite types are quite distinctive. Supratidal dolomites have δ18O values which are significantly higher (δ18O=?2 to +1‰ (PDB)) than the regional dolomite type (δ18O=?9 to ?2‰ (PDB)). Assuming the lowest δ18O values for the sabkha dolomite represent replacement in marine waters, the oxygen isotopic composition for Upper Devonian Canning Basin marine dolomite would be around δ18O=?2‰ (PDB). The petrographic and geochemical characteristics of the regional dolomite type support a burial diagenetic origin. However, sources of magnesium in current burial dolomitization models appear insufficient to account for the large volume of dolomite on the Barbwire Terrace. Therefore, it is suggested that dolomitization may have taken place in a near-surface environment with a major recrystallization event superimposed during burial diagenesis.  相似文献   

10.
川东三叠系飞仙关组碳酸盐岩的阴极发光特征与成岩作用   总被引:16,自引:0,他引:16  
四川盆地东部三叠系飞仙关组是近年来我国发现的重要天然气储层, 高孔隙度、高渗透率的碳酸盐储层都分布于白云岩地层中, 因而碳酸盐的成岩作用, 尤其是白云岩化作用和白云岩的成因为石油地质学家和沉积学家高度关注.对四川盆地东部罗家寨构造三叠系飞仙关组42个碳酸盐岩样品进行了阴极发光分析, 结合与之有关的Mn、Fe、Mg元素分析和岩石学研究, 讨论了包括白云岩化作用在内的碳酸盐岩成岩过程中可能的成岩流体性质及来源.四川盆地东部三叠系飞仙关组碳酸盐岩普遍具有很弱的阴极发光性, 这与其很低的Mn、Fe含量有关, 说明沉积期后非海相流体对飞仙关组碳酸盐岩的影响非常有限, 海源流体在成岩过程中发挥了主导作用; 不同石灰岩类型和不同白云岩类型仍然具有不同的阴极发光性, 成岩组分含量越高的碳酸盐岩, 或者说与沉积期后流体(主要是孔隙流体) 关系越密切的碳酸盐岩的阴极发光强度越低, 说明随着埋藏成岩作用的进行, 四川盆地东部三叠系碳酸盐岩孔隙流体受海源流体的影响是逐渐增强的; 阴极发光分析结果表明, 作为四川盆地东部主要储集岩的结晶白云岩形成机制与埋藏过程中的深循环流体有关, 这种深循环流体没有或很少穿越铝硅酸盐地层, 但穿越了三叠系内部的某些海相地层, 这些海相地层可能是广泛存在于四川盆地三叠系的蒸发盐地层, 由蒸发盐成岩过程提供的海源流体参与了结晶白云岩的白云岩化作用.   相似文献   

11.
范美彤  葛璐  朱碧  杨涛 《地质学报》2019,93(8):2081-2091
在冷泉的研究中,确定富甲烷流体的来源是非常重要的,Sr同位素对流体来源、混合模式和水岩反应等具有很好的示踪作用。近年来,国际上对冷泉碳酸盐岩Sr同位素的示踪研究越来越关注。本文系统总结了现代和古代冷泉碳酸盐岩Sr同位素的研究进展,简要归纳了Sr同位素分析测试方法,并对化学前处理过程中采用的不同酸溶液溶解样品的方法进行了对比,指出了建立标准化学前处理方法的必要性。现代和古代冷泉碳酸盐岩Sr同位素组成的变化范围较大,不同碳酸盐矿物具有不同的Sr同位素特征。冷泉碳酸盐岩Sr同位素的示踪研究集中在现代和古代冷泉流体来源的定性研究、混合流体来源的定量模型计算、以及古代冷泉碳酸盐岩的Sr同位素定年等方面。尽管取得了一系列进展,但是定量计算端元流体混合比例的准确性还有待提高,同时利用Sr同位素对古代样品进行定年存在不确定因素,其适用条件也需要进一步研究。  相似文献   

12.
South of the Caledonian Brabant-Wales Massif a more than 200 m thick Tournaisian to Lower Visean replacive dolomite unit can be followed for several hundred kilometres from the Boulonnais (France) to Aachen (Germany). Field observations, of features such as karst cavities occurring at the top of the Lower Visean dolomite which are filled by Lower Visean crinoidal limestone, indicate that dolomitization and karstification took place during the Early Visean. This early development of the dolomite is in agreement with the presence of stylolites cutting the dolomite fabric. The minor element composition of the majority of the dolomites remains almost uniform throughout the entire studied area. Values for Fe, Mn, Na and Sr are normally in the range 700–4700 ppm, 15–400 ppm, 80–300 ppm and 50–200 ppm, respectively. The δ13C values (range-0.72 to +5.31%o) mainly reflect the carbon isotopic composition of the precursor limestones. The δ18O values, in contrast, are highly variable: ranging from-19.15 to +0.85%o. This rather large range of δ18O values is explained by multiple-step re-equilibration/recrystallization during progressive burial and subsequent uplift of the dolomites. These processes are also responsible for the high 87Sr/86Sr values of the dolomites which range from about 0.7088 to 0.7098. They are distinctly more radiogenic than Lower Visean marine carbonates (0.7076–0.7078). Correlation, however, of δ18O values or 87Sr/86Sr ratios with dolomite and/or cathodoluminescenec (CL) textures has not been very successful. This suggests that recrystallization may remain unrecognized if only petrographic techniques are used. Nevertheless, certain CL textures can be related to specific interactions with the ambient recrystallizing fluids.  相似文献   

13.
Rare earth elements and yttrium geochemistry of dolomite from post-Variscan vein-type Zn–Pb–Cu mineralization was studied in the Nízký Jeseník and Upper Silesian Basins. Combined with crush–leach analyses of fluid inclusions, the study provided important information on fluid–rock interaction, physico-chemical and redox conditions during crystallization of the dolomite. The mineralization is hosted by Carboniferous siliciclastic rocks, representing Variscan flysch and molasse sedimentation. Dolomite samples contain highly variable contents of REE (between 18 and 295 ppm) and Y (between 17 and 95 ppm). REY patterns are divided into four different groups which differ in regional provenance, LREE vs. HREE enrichment/depletion and significance of Eu, Gd and Y anomalies. These patterns can be the result of 1) precipitation of dolomite from near neutral fluids with important concentrations of complexing ligands as a main factor for the REY partitioning, 2) interaction of migrating fluids with host or basement rocks, or, most probably, 3) a combination of both.Regarding the importance of complexing ligands, it is proposed that in all samples fluoride and chloride complexes prevailed over sulphate, bicarbonate and hydroxide complexes. Interaction of fluids with rocks was strongly affected by the fluid temperature. Dolomites which precipitated from fluids with homogenization temperature higher than 110 °C are mostly REY-enriched while fluids colder than 110 °C produced REY-depleted dolomite. The REY-enrichment may indicate higher effectiveness of leaching of REE-bearing minerals (probably monazite, allanite and biotite) at higher temperatures. The preferential loss of LREE can be caused by the recrystallization or remobilization of dolomite. Generally, an increase in salinity and contents of Cl and F in the fluids is mostly accompanied by a higher REY content in dolomite. Positive Eu anomalies and small negative Gd and Y anomalies are typical for most of the chondrite-normalized patterns. Positive EuCN anomalies in dolomites are most probably the result of an increase of Eh in the parent fluid. Distribution of Y is expected to be predominantly controlled by solution complexation.  相似文献   

14.
The Middle Devonian Winnipegosis carbonate unit in south‐central Saskatchewan is partially to completely dolomitized. Two major types of replacive dolomite are distinguished. Microcrystalline to finely crystalline dolomite (type 1) displays nonplanar‐a to planar‐s textures, mimetically replaces the precursor limestone, accounts for about four‐fifths of dolomite phases volumetrically, and mainly occurs in the Winnipegosis mounds and the Lower Winnipegosis Member directly underlying the mounds. Medium crystalline dolomite (type 2) shows planar‐s to planar‐e textures, commonly occurs in the Lower Winnipegosis and Brightholme members, and decreases upward in abundance. The 87Sr/86Sr ratios of type 1 dolomite (0·70795 to 0·70807) fall within the estimated Sr‐isotopic range for Middle Devonian marine carbonates. Stratigraphic, petrographic and geochemical data constrain the formation of type 1 dolomite to hypersaline sea water in a near‐surface environment, after marine cementation and sub‐aerial diagenesis and prior to precipitation of the Middle Devonian Leofnard salts. Movement of dolomitizing fluids could be driven by density differences and elevation head. The shift to lower δ18O values of type 1 dolomite [?7·4 to ?5·1‰ Vienna Pee Dee Belemnite (VPDB)] is interpreted as the result of recrystallization at elevated temperatures during burial. Type 2 dolomite has higher 87Sr/86Sr ratios (0·70809–0·70928), suggesting that the dolomite probably formed from basinal fluids with an increased richness in the radiogenic Sr isotope. In type 2 dolomite, Sr2+ concentrations are lower, and Fe2+ and Mn2+ concentrations are higher, compared with the associated limestone and type 1 dolomite. Type 2 dolomite is interpreted as having been formed from upward‐migrating basinal fluids during latest Devonian and Carboniferous period.  相似文献   

15.
针对塔北上寒武统下丘里塔格群复杂的白云石化作用,通过岩石学和地球化学分析认为下丘里塔格群埋藏后主要经历3期白云石化流体作用:早期浅埋藏环境下高浓度卤水在台缘带的迁移促进了渗透回流白云石化作用发生,形成残余颗粒幻影结构的粉晶白云岩,具有碳氧同位素负偏和微量元素Fe、Mn、Sr、Ba元素质量分数较低的特征;第二期流体主要为地层孔隙残余高盐度海水,在埋藏压实作用下白云岩发生重结晶作用,晶粒结构广泛发育,具有同位素碳正氧负和微量元素呈现富Mn贫Fe及低Sr高Ba的特征,该时期是晶间孔和晶间溶孔发育的主要时期;第三期流体主要为沿基底断裂上涌的高温富镁热液流体,发育构造-热液白云石化作用形成大量鞍状白云石,具有富Mn贫Fe和氧同位素负偏明显等特征。  相似文献   

16.
Rare earth elements (REE) were determined in fine, medium and coarse crystalline replacement dolomites, and for saddle dolomite cements from the Middle Devonian Presqu'ile barrier from Pine Point and the subsurface of the Northwest Territories and north-eastern British Columbia. REE patterns of the fine crystalline dolomite are similar to those of Middle Devonian limestones from the Presqu'ile barrier. Fine crystalline dolomite occurs in the back-barrier facies and may represent penecontemporaneous dolomitization at, or just below, the sea floor. Medium crystalline dolomite is widespread in the lower southern and lower central barrier. Medium crystalline dolomite is slightly depleted in heavy REE compared with Devonian marine limestones and fine crystalline dolomite, and has negative Ce and Eu anomalies. Medium crystalline dolomites replaced pre-existing limestones or were recrystallized from earlier fine crystalline dolomites. During these processes, the REE patterns of their precursors were modified. Late stage, coarse crystalline replacement dolomite and saddle dolomite cements occur together in the upper barrier and have similar geochemical signatures. Coarse crystalline dolomites have negative Eu anomalies, and those from the Pine Point area also have positive La anomalies. Saddle dolomites are enriched in light REE and have positive La anomalies. The REE patterns of coarse crystalline dolomite and saddle dolomite differ from those of marine limestones and fine and medium crystalline dolomites, suggesting that different diagenetic fluids were responsible for these later dolomites. Although massive dolomitization requires relatively large volumes of fluids in order to provide the necessary amounts of Mg2-. dolomitization and subsequent recrystallization may not necessarily modify the REE signatures of the precursor limestones because of the low concentrations of REE in most natural fluids. Thus, relative fluid-rock ratios during diagenesis may be estimated from REE patterns in the diagenetic and precursor minerals. Fine crystalline dolomites retain the REE patterns of their limestone precursors. In the medium and coarse crystalline dolomites the precursor REE patterns were apparently altered by large volumes of fluids involved during dolomitization. This study suggests that REE compositions of dolomites and their limestone precursors may provide important information about the relative amounts of fluids involved during diagenetic processes, such as dolomitization.  相似文献   

17.
The Precambrian Dengying Formation is a set of large-scale, extensively dolomitized, carbonate reservoirs occurring within the Sichuan Basin. Petrographic and geochemical studies reveal dolomitization was a direct result of precipitation by chemically distinct fluids occurring at different times and at different intensities. Based on this evidence, dolomitization and multiple fluid flow events are analyzed, and three types of fluid evolution models are proposed. Results of analysis show that Precambrian Dengying Formation carbonates were deposited in a restricted peritidal environment(630–542 Ma). A high temperature and high Mg~(2+) concentration seawater was a direct result of dolomitization for the micrite matrix, and for fibrous aragonite in primary pores. Geochemical evidence shows low δ~(18)O values of micritic dolomite varying from-1.29‰ to-4.52‰ PDB, abundant light rare earth elements(REEs), and low dolomite order degrees. Microbes and meteoric water significantly altered dolomite original chemical signatures, resulting in algal micritic dolomite and the fine-grained, granular, dolosparite dolomite having very negative δ~(18)O values. Finely crystalline cement dolomite(536.3–280 Ma) and coarsely crystalline cement dolomite have a higher crystallization degree and higher order degree. The diagenetic sequence and fluid inclusion evidence imply a linear correlation between their burial depth and homogenization temperatures, which closely resemble the temperature of generated hydrocarbon. Compared with finely crystalline dolomite, precipitation of coarsely crystalline dolomite was more affected by restricted basinal fluids. In addition, there is a trend toward a more negative δ~(18)O value, higher salinity, higher Fe and Mn concentrations, REE-rich. Two periods of hydrothermal fluids are identified, as the exceptionally high temperatures as opposed to the temperatures of burial history, in addition to the presence of high salinity fluid inclusions. The early hydrothermal fluid flow event was characterized by hot magnesium-and silicon-rich fluids, as demonstrated by the recrystallized matrix dolomite that is intimately associated with flint, opal, and microcrystalline quartz in intergranular or intercrystalline pores. This event was likely the result of a seafloor hydrothermal chimney eruption during Episode I of the Tongwan Movement(536.3±5.5 Ma). In contrast, later hydrothermal fluids, which caused precipitation of saddle dolomite, were characterized by high salinity(15–16.05 wt% NaCl equivalent) and homogenization temperatures(250 to 265°C), δ~(18)O values that were more enriched, and REE signatures. Geochemical data and the paragenetic sequence indicate that this hydrothermal fluid was related to extensive Permian large igneous province activity(360–280 Ma). This study demonstrates the presence of complicated dolomitization processes occurring during various paleoclimates, tectonic cycles, and basinal fluids flow; results are a useful reference for these dolomitized Precambrian carbonates reservoirs.  相似文献   

18.
Two sediment-hosted stratiform Cu–Co deposits in the Tenke-Fungurume district of the Central African Copperbelt were examined to evaluate the alteration history of the ore-hosting Mines Series and its implications for ore distribution and processing. Core logging and petrography, focused on lithology and timing relationships, outlined a complex alteration sequence whose earliest features include formation of anhydrite nodules and laths, followed by precipitation of dolomite. Later alteration episodes include at least two silica introductions, accompanied by or alternating with two dolomite introductions into the existing gangue assemblages. One introduction of Cu–Co sulfides accompanied the last episode of dolomite alteration, overprinting an earlier generation of ore whose gangue association was unidentifiable. Sulfides and some carbonates were subsequently modified by supergene oxidation, transport, and reprecipitation to 100–200?m depth. Present-day ore distribution resulted from these successive processes. Ore is concentrated in two shale-dominated units on either side of a cavernous silicified dolomite, which is interpreted as the main conduit for the mineralizing fluids. Sulfide ores precipitated at the redox or sulfidation contacts between this dolomite and the shales. Later, supergene fluids dissolved and moved some of the metals, redepositing them as oxides and carbonates. Solubility differences between Cu and Co in supergene conditions caused them to precipitate separately. Thus, modern ore distribution at Tenke-Fungurume results both from original hypogene lithology- and contact-related precipitation and from supergene oxidation, transport, and Cu–Co decoupling. The supergene fluid flow also redistributed gangue minerals such as dolomite, which has an economically important influence on the processing costs of supergene ores.  相似文献   

19.
碳酸盐沉积物的成岩作用   总被引:4,自引:2,他引:2  
赵彦彦  郑永飞 《岩石学报》2011,27(2):501-519
化学沉淀碳酸盐矿物在沉积后很容易受到各种作用的影响,其中最重要的是其在成岩阶段所经历的成岩作用.碳酸盐沉积物在成岩过程中主要受大气降水、海水和埋藏过程中孔隙流体的控制,经历一系列压实、溶解、矿物的多相转变、重结晶、胶结等成岩作用,逐渐转变为固结的岩石.在成岩过程中,由于孔隙流体与沉积流体之间的异同以及温度的变化,碳酸盐沉积物的原始矿物成分、地球化学特征可能会很好的保存下来,但在许多情况下,也可能会改变,从而使我们无法准确反演碳酸盐沉积物在沉积时水体的特征.因此,我们在应用碳酸盐岩重建相关古环境和古气候变化的时候,必须要通过有效的方法来对碳酸盐岩是否受到成岩作用的影响进行鉴定.  相似文献   

20.
Middle to Late Ordovician subtidal carbonates in the Manitoulin Island area of Ontario are predominantly limestone in composition, but non-ferroan and ferroan dolomite is a common cement as well as a selective or locally pervasive replacement phase. Integration of field, petrographic, geochemical (δ13C, δ18O) and fluid inclusion data indicates that lithification of these carbonates occurred during burial diagenesis, with much of the alteration controlled by regional fracturing and hydrothermal influences. Aqueous (type 1) fluid inclusions in early calcite (pre-dolomite) and dolomite are saline (> 29 wt% NaCl eq.) solutions with Ca and/or Mg in excess of Na and display homogenization temperatures with modes of 95 and 101°C, respectively. These temperatures can be explained by significantly more burial than can be accounted for either by the available stratigraphic information or by an unusually high palaeogeothermal gradient, which also is not well supported. The fluid inclusion temperatures are interpreted to have resulted from hydrothermal fluids which circulated during the burial diagenesis of these strata. Type 1 inclusions in late (post-dolomite) calcite are less saline (<19 wt% NaCl eq.) and have a bimodal distribution of homogenization temperatures with a relatively well defined low temperature peak similar to those in early calcite and dolomite and a broad higher temperature grouping with a mode at 183°C. A small proportion of methane and light hydrocarbon-bearing fluid inclusions (type 2) are present in all stages of carbonate. Dolomitizing fluids were derived from burial compaction of argillaceous sediments in the more central parts of the Michigan Basin and the updip migration of these brines along fractures to the basin margin where the carbonates of the Manitoulin Island area were dolomitized. Alternatively, migration of dolomitizing brines downward from the overlying pervasively dolomitized Silurian sequence into fractures in the Ordovician carbonates may have occurred. Integration of the aqueous fluid inclusion data into the diagenetic history of these carbonates remains equivocal because most of the inclusions are secondary or indeterminate in origin. Nevertheless, high salinities resulting from interaction with evaporitic strata and hydrothermal effects are clearly implicated although the origin of the latter remains unclear. The alteration styles of the Ordovician carbonates in the Manitoulin area are similar to those of Ordovician hydrocarbon reservoirs described from other parts of the Michigan Basin. They indicate that fracture-related diagenesis occurred on a basin-wide scale and that hydrothermal effects were important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号