首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
PSYCHIC is a process-based model of phosphorus (P) and suspended sediment (SS) mobilisation in land runoff and subsequent delivery to watercourses. Modelled transfer pathways include release of desorbable soil P, detachment of SS and associated particulate P, incidental losses from manure and fertiliser applications, losses from hard standings, the transport of all the above to watercourses in underdrainage (where present) and via surface pathways, and losses of dissolved P from point sources. The model can operate at two spatial scales, although the scientific core is the same in both cases. At catchment scale, the model uses easily available national scale datasets to infer all necessary input data whilst at field scale, the user is required to supply all necessary data. The model is sensitive to a number of crop and animal husbandry decisions, as well as to environmental factors such as soil type and field slope angle. It is envisaged that the catchment-scale model would provide the first tier of a catchment characterisation study, and would be used as a screening tool to identify areas within the catchment which may be at elevated risk of P loss. This would enable targeted data collection, involving farm visits and stakeholder discussion, which would then be followed up with detailed field-scale modelling. Both tiers allow the effects of possible mitigation options at catchment scale (Tier 1) and field scale (Tier 2) to be explored. The PSYCHIC model framework therefore provides a methodology for identifying critical source areas of sediment and P transfer in catchments and assessing what management changes are required to achieve environmental goals.  相似文献   

2.
This paper describes the preliminary evaluation of the PSYCHIC catchment scale (Tier 1) model for predicting the mobilisation and delivery of phosphorus (P) and suspended sediment (SS) in the Hampshire Avon (1715 km2) and Herefordshire Wye (4017 km2) drainage basins, in the UK, using empirical data. Phosphorus and SS transfers to watercourses in the Wye were predicted to be greater than corresponding delivery in the Avon; SS, 249 vs 33 kg ha−1 yr−1; DP, 2.57 vs 1.26 kg ha−1 yr−1; PP, 2.20 vs 0.56 kg ha−1 yr−1. The spatial pattern of the predicted transfers was relatively uniform across the Wye drainage basin, whilst in the Avon, delivery to watercourses was largely confined to the river corridors and small areas of drained land. Statistical performance in relation to predicted exports of P and SS, using criteria for relative error (RE) and root mean square error (RMSE), reflected the potential shortcomings associated with using longer-term climate data for predicting shorter-term (2002–2004) catchment response and the need to refine calculations of point source contributions and to incorporate additional river basin processes such as channel bank erosion and in-stream geochemical processing. PSYCHIC is therefore best suited to characterising longer-term catchment response.  相似文献   

3.
An understanding of the relative importance of different hydrological pathways in phosphorus delivery from land to water is currently constrained by a lack of appropriate methods available to quantify the delivery process. New monitoring tools are needed which will provide a framework for understanding phosphorus (P) transfer and delivery at a range of scales in agricultural catchments. A field methodology incorporating the techniques of event-based, on-site observation and sampling within a flexible, non-plot based structure is described and applied to a first order stream catchment in Southern England, UK. The results show that P transfers to the stream reach monitored were dominated by inputs from one field drain, and that overland flow inputs, despite being directly connected to the stream and containing higher P concentrations (maximum 3708 μg l−1), contributed less to the stream P flux. The processes of P transfer and delivery to the stream were complex, changing both within flow pathways and temporally over an event.  相似文献   

4.
Asok K. Sen 《水文研究》2009,23(8):1147-1157
We have investigated riverflow variability in England and Wales by examining the reconstructed monthly discharge time series from fifteen catchments in these regions for the period 1865–2002. The riverflow fluctuations exhibit a strong annual cycle. The flow in the annual cycle is found to be intermittent, with the degree of intermittency varying from one catchment to another. An intermittent flow is characterized by bursts of high discharge separated by intervals with low or no discharge. By applying a continuous wavelet transform to the time series, we have identified the occurrence of intermittency in the annual cycle. The riverflow activity is also found to exhibit variations at interannual and quasi‐decadal time scales. These variations may be linked to large‐scale climatic processes such as the North Atlantic Oscillation (NAO). We have used the kurtosis of the probability density functions of the various time series as a measure of the degree of intermittency. An intermittent flow is characterized by a peaked (super‐Gaussian) probability density function with kurtosis in excess of 3. A higher value of kurtosis signifies a higher degree of intermittency. Intermittent fluctuations are more difficult to predict accurately than persistent oscillations, i.e., those lasting continuously over a long time interval. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
One of the most serious problems caused by eutrophication of shallow lakes is the disappearance of submerged macrophytes and the switch to a turbid, phytoplankton-dominated state. The reduction of external nutrient loads often does not result in a change back to the macrophyte-dominated state because stabilising mechanisms that cause resilience may delay a response. Additional internal lake restoration measures may therefore be needed to decrease the concentration of total phosphorus and increase water clarity. The re-establishment of submerged macrophytes required for a long-term stability of clear water conditions, however, may still fail, or mass developments of tall-growing species may cause nuisance for recreational use. Both cases are often not taken into account when restoration measures are planned in Germany, and existing schemes to reduce eutrophication consider the topic inadequately. Here we develop a step-by-step guideline to assess the chances of submerged macrophyte re-establishment in shallow lakes. We reviewed and rated the existing literature and case studies with special regard on (1) the impact of different internal lake restoration methods on the development of submerged macrophytes, (2) methods for the assessment of natural re-establishment, (3) requirements and methods for artificial support of submerged macrophyte development and (4) management options of macrophyte species diversity and abundance in Germany. This guideline is intended to help lake managers aiming to restore shallow lakes in Germany to critically asses and predict the potential development of submerged vegetation, taking into account the complex factors and interrelations that determine their occurrence, abundance and diversity.  相似文献   

6.
Nature‐based approaches to flood risk management are increasing in popularity. Evidence for the effectiveness at the catchment scale of such spatially distributed upstream measures is inconclusive. However, it also remains an open question whether, under certain conditions, the individual impacts of a collection of flood mitigation interventions could combine to produce a detrimental effect on runoff response. A modelling framework is presented for evaluation of the impacts of hillslope and in‐channel natural flood management interventions. It couples an existing semidistributed hydrological model with a new, spatially explicit, hydraulic channel network routing model. The model is applied to assess a potential flood mitigation scheme in an agricultural catchment in North Yorkshire, United Kingdom, comprising various configurations of a single variety of in‐channel feature. The hydrological model is used to generate subsurface and surface fluxes for a flood event in 2012. The network routing model is then applied to evaluate the response to the addition of up to 59 features. Additional channel and floodplain storage of approximately 70,000 m3 is seen with a reduction of around 11% in peak discharge. Although this might be sufficient to reduce flooding in moderate events, it is inadequate to prevent flooding in the double‐peaked storm of the magnitude that caused damage within the catchment in 2012. Some strategies using features specific to this catchment are suggested in order to improve the attenuation that could be achieved by applying a nature‐based approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号