首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
长江中下游成矿带位于大别造山带、长江中下游凹陷、江南隆起带等大地构造单元结合部位,通过在研究区内布设两条首尾相接共计150 km长的大地电磁剖面,获得了50 km以浅岩石圈尺度的电性分布.长江中下游地区中段地下电性结构显示出在地下10 km和30 km处分别存在明显的圈层结构,以此认为现今横向稳定的"电莫霍"反映了研究区经历燕山期陆内构造-岩浆活动后已基本上完成壳幔重新平衡;而分隔大地构造单元的郯庐断裂带、长江断裂带以及江南断裂带在电性上具有特征的梯度显现,在印支造山期后的引张背景下,断裂带成为强伸展活动带与控制了燕山期大范围的陆内岩浆活动;高导地幔的局域性存在以及从北向南地幔导电性的变化反映了在经受深部动力学过程中处于不同大地构造部位的地幔所遭受的不同类型的改造以及地幔深部的构造极性.  相似文献   

2.
鲜水河断裂带南段深部电性结构特征研究   总被引:5,自引:1,他引:5       下载免费PDF全文

通过对新都桥—小金剖面的大地电磁测深及重磁实测资料研究,结合区域地质资料,对鲜水河断裂带南段及邻区深部构造、壳内高导层、电性结构与历史地震的关系进行了研究.结果表明:(1)鲜水河断裂带深浅表现出不同特征,浅部是以地壳脆性-剪切带为主的断裂系统,深部是以走滑型-壳幔韧性剪切带为主的断裂系统,断裂呈花状形态,深部到达上地幔;(2)在丹巴构造带及鲜水河断裂带的中下地壳,广泛发育壳内高导层,其分布具有不均匀性,且与断裂带构造活动有关;(3)在鲜水河断裂带的走滑剪切作用下,上地壳物质发生原地重熔产生花岗岩浆是折多山花岗岩形成的主要机制;(4)鲜水河断裂带地震发生机理与塑性软弱层密切相关,受塑性软弱层拖拽作用,应力区集中在高阻体脆性介质内部靠近断层一侧,使得岩石破碎而发生地震.

  相似文献   

3.
云南南部地区深部电性结构特征研究   总被引:8,自引:6,他引:8       下载免费PDF全文
在云南南部地区布设了一条孟连—罗平的北东向大地电磁测深剖面,以开展该地区的深部电性结构探测和孕震环境探查.沿该剖面进行了114个大地电磁测深点的观测,经过对观测资料的远参考Robust处理、定性分析和二维反演,得到了沿该剖面地壳、上地幔电性结构模型,从模型的电性结构特征进一步探讨了剖面穿过的3个地震区的深部地震孕育环境.研究结果表明:沿剖面的地壳上地幔电性结构反映出与区域地质构造资料基本一致的构造特征;该区的三个强震带地球深部都存在壳内低阻体,地震发生在电阻率梯度带上;断裂带的两侧块体介质的电阻率差异是强震活动带重要的深部背景.  相似文献   

4.
藏北高原主要断裂带电性结构特征   总被引:4,自引:4,他引:4       下载免费PDF全文
对600线的部分测点及2100线的全部测点构成的五道梁—绿草山大地电磁深探测剖面进行了二维非线性共轭梯度反演,得到青藏高原中北部二维电性结构模型.根据该电性结构模型,结合研究区域重、磁及区域地质资料推断了青藏高原中北部主要断裂的位置、产状和切割深度等信息.研究结果表明,青藏高原中北部发育有F1—F16一系列深断裂.其中,F1(苟鲁山克错—囊谦断裂带)和F9(乌兰乌拉湖—玉树断裂带)共同构成金沙江缝合带的北界,是松潘—甘孜—可可西里地块与羌塘—唐古拉地块的分界线;F4、F10—F12共同构成昆仑断裂带,F4(阿尼玛卿断裂带)是南部松潘—甘孜—可可西里地体和北部北昆仑-柴达木地体的分界线;F6、F13—F16为柴北缘断裂带,由南倾的岩石圈深断裂F6和一系列产状相背、北倾的逆冲断裂F13—F16所构成;F7和F8可能反映岩石圈内产状平缓、隐伏的滑脱构造形迹.  相似文献   

5.
祁连山中段深部电性结构及潜在震源危险区的研究   总被引:3,自引:1,他引:3  
位于青藏高原北缘的祁连山中段是地震十分活跃的地区之一。本课题采用MT重复测量方法,在该区建立的长约400km的剖面上进行监测。本文根据监测所获取的MT参数,从静态的角度探讨了该区深部电性结构及其电性横向变化特征,进而评估了该区的潜在震源区。研究发现,该区深部介质电性的物质特征有:1.部分地带呈现出剧烈的电性横向变化,2.具有极为发育的特殊增厚的壳内高导层地段,3具有高、低热流的过渡边缘地带,4.具有与活动大断裂相交汇的隐伏断裂构造的局部地段。近年来该区地震活动增强,数次中强地震都发生在具有上述特征的地带中,该地带将可能是祁连山中段的强震-大震潜在震源危险区。这四种电性特征将是潜在震源区的判别标志。  相似文献   

6.
本文通过对横穿海拉尔盆地的一条长约222km的北西—南东向大地电磁测深剖面数据的定性分析及二维定量反演解释,首次获得了海拉尔盆地高精度大范围的电性结构图.海拉尔盆地中-上地壳电性结构纵向上具有典型的分层特性,总体可分为四层,即低阻层-高阻层-低阻层-高阻层,而横向上又具有分块特点.海拉尔盆地边缘及内部分布的众多断裂将盆地划分为隆起与坳陷相间的格局,并发现盆地内部坳陷区也存在有小规模凸起,每一构造单元内部电性结构各具特点.海拉尔盆地中-上地壳低阻层底面最深达28km,通常在6~16km之间,但厚度变化不大,在4~10km之间,且隆起区与坳陷区底面埋深差别较大.据电性结构模型推测出两条新断裂F8和F9,且断裂F9规模较大,为基底断裂.中-上地壳的低阻层可能在一定程度上控制着海拉尔盆地内油气田的分布格局.  相似文献   

7.
青藏高原东北部地区地壳电性结构特征   总被引:16,自引:14,他引:16       下载免费PDF全文
通过对青藏高原东北部地区的大地电磁测深数据进行分析、处理,用非线性共轭梯度算法(NLCG)进行二维TE、TM模式联合反演,得到研究地区的地壳电性结构特征.结果表明在研究区的中下地壳内普遍存在高导层,其成因一般为部分熔融,其中在羌塘中部地壳内的局部高导异常主要受流体的影响.  相似文献   

8.

中亚造山带东段经历了古亚洲洋、蒙古-鄂霍茨克洋和古太平洋构造体制的多重作用,多期次的构造活动不仅改造了地形地貌、岩石圈结构,同时也改造了软流圈分布,因此对软流圈结构研究具有重要的科学意义.为了揭示复杂多重构造体系下软流圈的分布特征,完成了中亚造山带东段约1800 km长大地电磁测深剖面,并对数据进行非线性共轭梯度反演,获得二维电性结构模型.研究发现:中亚造山带东段岩石圈内部存在多处低阻异常,地表多对应第四纪火山群或古缝合带,表明这些低阻异常与软流圈上侵有关.软流圈呈现高导特征,南部略薄,电阻率值为10~30 Ωm,北部厚度较大,电阻率值为10~0.1 Ωm,这种电性结构特征体现了中亚造山带东段软流圈南北两侧厚度、部分熔融程度的不均一性.而已有的层析成像结果显示中亚造山带软流圈东西向则呈现东厚西薄的特征.结合区域地质,提出软流圈与岩石圈一样在碰撞造山过程中厚度、部分熔融程度也会随之变化的动力学认识.中亚造山带东段软流圈主要经历了古亚洲洋构造体系、蒙古-鄂霍茨克构造体系和太平洋构造体系三阶段的构造事件影响,因此中亚造山带东段软流圈的南北向差异,推断为古亚洲洋闭合早于鄂霍茨克洋闭合的时限差异所致,东西向差异则主要受太平洋构造体系的影响.

  相似文献   

9.
天水地区大地电磁测量及深部电性结构   总被引:3,自引:0,他引:3       下载免费PDF全文
天水地区的大地电磁测量结果表明,在43km左右的深度上普遍存在高导层,这可能是壳幔过渡带的反映。岩石圈厚度大约95-110km。在天水太京附近可能存在一条大型近东西向地壳-岩石圈构造带,在秦安以北的叶堡和陇城附近可能也存在一条近南北向的大型地壳-岩石圈构造带,它们都是不同构造单元的分界线。1654年天水8级大震可能与深部热异常引起的热应力有关。  相似文献   

10.
青藏高原东部岩石圈电性结构特征及其构造意义   总被引:2,自引:0,他引:2       下载免费PDF全文
主要介绍青藏高原东部下察隅—清水河(EHS3D-3)剖面的大地电磁(MT)探测结果。根据2007年沿该测线观测的MT数据,经过资料处理、分析和二维反演,得到了研究区岩石圈的电性结构。结果表明:沿剖面电阻率分布具有纵向成层,横向分区的特征;上地壳由不同大小的高阻体构成;拉萨地块和羌塘地体中下地壳分别存在一个大范围的低阻体,初步认为这2个低阻体由深部流体以及部分熔融所致,可能是高原东部环绕东构造结的2个物质流通道,同时也是高原南北两侧的2个主要剪切走滑带;雅鲁藏布缝合带和班公-怒江缝合带均表现为向北逐渐加深的相对低阻带,可能是俯冲板片表面低阻物质的反映;金沙江断裂深部表现为强烈的低阻体异常,但与该区其它缝合带的电性特征区别较大。  相似文献   

11.
通过在大别造山带东部横穿超高压变质带的一条NNE向剖面大地电磁测深资料的分析解释,获得了关于沿剖面的地壳上地幔二维电性结构,显示北淮阳与大别地块是电性差异显著的构造单元,它们之间的界面与晓天—磨子潭断裂对应;晓天—磨子潭断裂倾向北,在中上地壳层位出现错动解耦现象;从地表向深处可划分出4个主要电性层:地表风化层、中上地壳高阻层、壳内相对高导层以及上地幔层;大别地块内中、上地壳层位以高阻层为主,与高压-超高压变质岩分布区对应,高阻层最厚处在岳西—英山之间;在大别地块内,推测存在燕山期花岗质岩浆活动的通道,它们造成了超高压变质岩的进一步抬升,同时影响了大别地块内存在的壳内相对高导层的分布,壳内相对高导层在层位上相差较大.  相似文献   

12.
青藏高原东缘川滇构造区深部电性结构特征   总被引:2,自引:2,他引:2       下载免费PDF全文
本文对位于青藏高原东缘川滇构造区的贡山一绥江大地电磁测深(MT)剖面数据进行反演,获得沿剖面的深部电性结构,为研究喜马拉雅东构造结、川滇菱形地块与华南地块的构造变形特征、壳幔耦合关系、地块间接触关系以及相互作用等问题,提供电性结构的依据.研究发现:(1)电性结构揭示澜沧江断裂带和小金河断裂带为深大断裂带,控制着研究区的深部结构特征和形变机制;(2)澜沧江断裂带和金沙江断裂带之间的高阻体,可能是扬子古地块的残留部分;小金河断裂带和安宁河断裂带之间的高阻体,则是峨眉山大火山省喷发形成的冕宁一越西杂岩带;(3)在滇西地块、川滇地块和大凉山地块均存在低阻层,它们的介质属性有所不同,滇西地块下的低阻层"疑似"高热状态的岩浆囊,主要由缅甸弧向东俯冲运动引起的,中上地壳的高热状态使地块的活动性增强;川滇地块内部的壳内低阻层的成因为:理塘断裂带和小金河断裂带之间的地表低阻层由破碎带充水所致,而金沙江断裂带和理塘断裂带之间的中地壳低阻层可能是由局部熔融物质或含盐流体导致的,其为壳内物质运移的通道.从而在地下物质发生大规模走滑运动的过程中起到引导作用;川滇地块东部和大凉山地块西部的壳内低阻层可能与地慢物质的上涌有关;马边断裂带附近的低阻体可能与破碎带变宽和破碎带内的流体有关.  相似文献   

13.

研究青藏高原东缘地区的深部物质结构对于理解青藏高原的隆升及扩张机制具有重要的科学意义.本文将青藏高原东缘实测大地电磁测深剖面反演所得的岩石圈电性结构模型与高温高压岩石物理实验测得的上地幔矿物和熔融体导电性定量关系相结合,通过Hashin-Shtrikman(HS)边界条件建立上地幔电导率与温度、熔融百分比等参数的定量关系,在此基础上计算得到了青藏高原东缘上地幔热结构及熔融百分比分布模型.研究结果表明在青藏高原东缘地区通过大地电磁测深方法所探测到的上地幔低阻体可以解释为由高温作用所产生的局部熔融区域.其中,松潘—甘孜地块上地幔高导体对应的温度介于1300~1500℃之间,熔融百分比可高达10%,支持前人将松潘—甘孜地块内部的低阻体解释为局部熔融的观点.龙门山断裂带以东、四川盆地西缘的上地幔高导体温度介于1200~1400℃之间,熔融百分比介于1%~5%左右,表明扬子克拉通的西缘可能正在经历一定程度的活化作用.龙门山断裂带下方的上地幔高阻体温度介于1100℃附近,基本没有发生局部熔融,具有较冷的刚性块体特征,与该区域频发的地震活动相吻合.四川盆地东部的扬子上地幔温度介于800~900℃之间,没有发生局部熔融,符合古老稳定的克拉通块体的基本特征.

  相似文献   

14.
本文利用大地电磁测深数据,对穿过兰坪-思茅地块和川滇菱形地块以及进入扬子地块的云南兰坪-贵州贵阳大地电磁测深剖面展开了深部电性结构研究.采用大地电磁数据处理分析以及反演技术,对观测资料进行了由定性到定量全面地分析,通过二维非线性共轭梯度反演得到了沿剖面的较为详细的地壳上地幔电性结构,结合其他地质和地球物理资料的分析,对该剖面的二维电性结构进行解释,确定了主要断裂带和边界带的位置以及深部延伸情况,同时确定了壳内低阻层的分布位置,最后进行了区域动力学和孕震构造环境的探讨.研究表明:剖面壳幔电性结构分块性特征与区域地质构造分布特征基本一致,不同地块的电性结构存在显著差异,其中川滇菱形地块的结构相对复杂,上地壳的电性结构为高低阻相间分布特征,电阻率的突变带与地表断裂具有很好的对应关系;兰坪-思茅地块存在中上地壳低阻层,川滇菱形地块中西部存在下地壳低阻层,川滇菱形地块东部和华南地块西部存在中上地壳的低阻层;川滇菱形地块中部攀枝花附近的低阻层埋深最深,而华南地块西部会泽附近的低阻层埋深则最浅;兰坪-思茅地块和川滇菱形地块的中下地壳的低阻层可能与青藏高原物质的东南逃逸有关;华南块体的宣威以东的下地壳不存在低阻层,华南块体下地壳和上地幔的电阻率较高;攀枝花附近的高阻体可能是峨眉山玄武岩喷发导致底侵作用及幔源物质上侵的结果.  相似文献   

15.

在华北克拉通南缘至华夏地块之间完成了两条大地电磁长剖面,通过二维非线性共轭梯度反演,获得了沿剖面100 km深的电性结构模型.结合研究区地质和地球物理资料,详细分析了研究区地壳及上地幔顶部电性结构特征与地质含义.研究发现:(1)江山—绍兴断裂带深部低阻异常成因可能是受南华纪裂解事件影响以及晚中生代岩石圈伸展作用、深部热物质上涌造成的;(2)华北克拉通南缘大部分地区中下地壳及上地幔顶部表现为低阻异常,可能存在大范围的软弱层或发生局部熔融.长江中下游成矿带壳内高导体可能是由含水流体引起;(3)华夏地块电阻性地壳与晚中生代构造-岩浆活动有着紧密的关系,其上地幔顶部的高阻异常可能与玄武岩浆活动有关.古太平洋板块的西向俯冲是华夏地块晚中生代构造活动的动力学背景.

  相似文献   

16.

木里—盐源地区地处青藏高原东南缘,属于古特提斯洋构造域,是松潘—甘孜地块及扬子地块的交接地带,是研究青藏高原东南缘构造演化过程的重要区域.本文介绍的是横穿木里—盐源地区的大地电磁剖面,自北西向南东依次跨越锦屏山断裂、木里弧形构造区、丽江—小金河断裂、盐源盆地、金河—箐河断裂等构造.维性分析表明木里弧形构造区和金河—箐河断裂都表现为较强的三维性,因此本文采用大地电磁三维反演技术,获得了木里—盐源地区的精细电性结构.电性模型显示,沿剖面可以划分为4个主要的电性构造单元.锦屏山断裂以北的川西北次级地块下方10~20 km处,发育北西向低阻体,推断是古老的义敦岛弧区残留的物质;锦屏山断裂以南至丽江—小金河断裂为高阻体,可能是锦屏山山根;丽江—小金河断裂下方~10 km处发育北东向的低阻体,与龙门山—锦屏山构造带走向一致,结合剖面附近表现为张性的震源机制解特点,推测该低阻体很可能是北部的塑性物质受阻后一部分往西南沿着丽江—小金河断裂缝隙挤入的结果;盐源盆地下方在3~7 km发育厚度约5 km、长度达40 km的低阻层,电性主轴方向为北西向,与盐源断裂走向一致,解释为盐岩层,尤其是南段低阻体表现为延伸至地表的特征,与地表盐泉对应,为在盐源地区开展深部找钾盐矿提供了电磁方面的证据.

  相似文献   

17.
青藏高原东缘及四川盆地的壳幔导电性结构研究   总被引:8,自引:16,他引:8       下载免费PDF全文
自从2008年MS8.0级汶川大地震发生以来,青藏高原东缘便成为地质与地球物理研究的热点区域.该区域的龙门山断裂带标志着青藏高原东缘与四川盆地的边界.汶川地震即发生于龙门山断裂带内的映秀—北川断裂上.该地区现有的研究工作多集中于青藏高原东缘及四川盆地的西部,对四川盆地东部构造情况的研究目前较少.在SinoProbe项目的资助下,完成了一条跨越青藏高原东缘及整个四川盆地的大地电磁测深剖面.该剖面自西北始于青藏高原内部的松潘—甘孜地块,向东南延伸穿过龙门山断裂带、四川盆地内部及四川盆地东部的华蓥山断裂,最终止于重庆东南的川东滑脱褶皱带附近.维性分析表明剖面数据整体二维性较好,通过二维反演得到了最终的电性结构模型.该模型表明,从电性结构上看,沿剖面可分为三个主要的电性结构单元,分别为:浅部高阻、中下地壳低阻的松潘—甘孜地块,浅部低阻、中下地壳相对高阻的四川盆地,以及华蓥山以东整体为高阻特征的扬子克拉通地块.龙门山断裂带在电性结构上表现为倾角较缓、北西倾向的逆冲低阻体,反映了青藏高原东缘相对四川盆地的推覆作用.其在地下向青藏高原内部延伸,深度约为20 km左右.在标志逆冲推覆滑脱面的低阻层下存在—电性梯度带,表征着低阻的青藏高原中下地壳与高阻的扬子地壳之间的电性转换.位于四川盆地东边界的华蓥山断裂在电性结构上表现为—倾向为南东向的低阻体插入高阻的扬子克拉通结晶基底,切割深度约为30 km左右.这一结构反映出华蓥山向西的推覆作用.在电性结构模型的基础上,进一步讨论了青藏高原东缘的壳内物质流、青藏块体与扬子块体的深部关系以及青藏高原东部的隆升机制等构造问题.  相似文献   

18.

在SinoProbe-01项目的资助下,完成了一条跨越鄂尔多斯地块北部、河套断陷盆地和阴山造山带的大地电磁剖面,剖面长约440 km,共包括24个宽频测点和4个宽频-长周期联合测点.采用NLCG算法对TE和TM模式数据进行了二维反演,获得了该剖面的二维电性结构模型.结果表明:鄂尔多斯地块北部由浅至深电性结构比较简单,成层性较好,大体可分为低阻沉积盖层-高阻上地壳-低阻下地壳和上地幔顶部三层;河套断陷盆地和阴山造山带电性结构相对复杂,电阻率高低相间.鄂尔多斯地块北缘、河套断陷盆地以及阴山造山带区域的壳幔高导体可能与硫化物和部分熔融作用有关,而鄂尔多斯地块内部大规模的壳幔高导层可能是由高导矿物引起的.河套断陷盆地的沉降、阴山造山带的地势抬升和鄂尔多斯地块北缘东胜-杭锦旗一带的的隆起之间有着紧密的关系,它们的形成可能与区域伸展构造环境条件下的软流圈物质上涌有关.

  相似文献   

19.
青藏高原东缘地壳上地幔电性结构研究进展   总被引:4,自引:2,他引:4       下载免费PDF全文
经过数十年的努力,中国学者针对青藏高原东缘地壳上地幔探测,累积完成超过20000 km的大地电磁测深剖面,取得了一系列重要科学数据和认识,为青藏高原东缘构造格局、地壳上地幔电性结构、地震机制和动力学研究奠定了基础.根据青藏高原东缘的主要构造和断裂分布特征,本文重点对龙门山构造带、川滇构造带和三江构造带三个构造带分区进行研究,主要依据大地电磁探测工作成果和壳幔电性结构特征,系统地对青藏高原东缘地壳上地幔电性结构、与扬子西缘接触关系、汶川地震和芦山地震的电性孕震环境及弱物质流通道等几个方面进行了梳理和分析.一是青藏高原东缘地壳表层岩块和物质沿壳内高导层向龙门山造山带仰冲推覆,表现为逆冲推覆特征的薄皮构造;二是高原东部地壳中下部及上地幔顶部向龙门山造山带和上扬子地块西缘岩石圈深部俯冲,呈现刚性的上扬子地块西缘高阻楔形体向西插入柔性青藏块体的楔形构造;三是将汶川地震和芦山地震的震源投影到大地电磁剖面上,发现震源位于剖面下方的高阻块体与低阻体之间靠近高阻体的一侧,龙门山构造带岩石圈表现出高阻、高密度和高速的"三高"特征,这种非均匀电性结构可能构成地震孕育发生条件;四是川滇和三江地区的多条大地电磁剖面探测结果表明,在青藏高原东缘中下地壳存在下地壳流和局部管道流,大地电磁结果对其空间分布形态、位置及大小进行了较好的刻画.根据研究区壳幔电性结构特征的构造解析和综合实例分析,总结了青藏高原东缘六类壳幔电性结构模型,提出了下一步重点研究领域和目标.总之,青藏高原东缘壳幔电性结构的研究对揭示研究区岩石圈结构和构造格局提供了重要依据,对油气及矿产资源远景评价提供了背景资料,对"Y"型多地震区的构造关系和发震机理研究具有重要指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号