共查询到14条相似文献,搜索用时 93 毫秒
1.
本研究利用西藏台网记录的波形数据,采用gCAP方法反演了2015年4月25日尼泊尔MS8.1大震5次中等余震(5.0≤MS≤6.5)及西藏定日MS5.9地震震源机制解.结果显示,6次地震包含2个正断、2个走滑及2个逆冲型地震.其中2个正断型地震位于主震的东北方向,即发震断层的上盘,表明该区域受到主震同震位移的影响,表现出应力拉张的变化特征;2个走滑型地震在主震破裂的东南方向上,说明随着破裂往东南方向延伸,余震的走滑分量增强;另外2个逆冲型地震位于5月12日MS7.5强余震区域,与MS7.5地震的滑移状态一致,可能与主震同震位移引起该区域处于应力挤压状态密切相关.这些结果表明,尼泊尔MS8.1主震发生后,由于同震位移的影响,不同区域处于不同的应力状态,从而使中等余震表现出不同的震源类型. 相似文献
2.
本文利用改进的红外异常鲁棒估算(RETIRA)法对2015年尼泊尔MS8.1地震震区2007年1月—2015年8月共104个月的NOAA长波辐射日数据进行了处理,获得了该地震前后的红外辐射变化. 结果显示,在长达3158天的时间尺度内,尼泊尔地震破裂面区域的长波辐射值仅在震前半年内呈现显著的异常变化. 进一步对喜马拉雅构造带的分段研究表明:震前长波辐射异常出现在尼泊尔地震震中以西区域,说明地震孕育过程中喜马拉雅构造带西侧的应力积累高于东侧,这与前人利用GPS观测资料所得到的该区域应变积累特征一致;长波辐射异常的空间分布主要集中在喜马拉雅构造带南部,这一结果与地震震源机制所显示的发震断层南部区域为断层压缩区、北部为断层拉张区的应力状态相吻合. 因此,综合考虑检测到的长波辐射异常所呈现的空间和时间特征,本文认为该异常与尼泊尔MS8.1地震有关. 相似文献
3.
由于印度-欧亚板块碰撞,位于板块边界带的喜马拉雅地区大震频繁,但对其活动性的认识仍十分有限.2015年4月25日尼泊尔中东部地区时隔80年再次发生8级地震,为研究板缘地震提供了一次难得机遇.本文用西藏和尼泊尔的GPS连续观测数据和全球分布的远震地震波记录联合反演此次特大地震的破裂过程,结果显示此次地震发生在印度板块与青藏高原接触边界面——喜马拉雅主滑脱断层上.北倾11°、近东西(295°)走向的断层面破裂约100km长(博卡拉到加德满都),130km宽(从加德满都深入我国西藏吉隆县),破裂以逆冲滑动为主,平均幅度达到2.4m,释放的地震矩高达9.4×1020 N·m.反演结果还显示,震源体主要破裂分布深度范围为5~25km,应无地表破裂,属于一次盲地震.基于GPS资料推测的地壳现今运动速率及1833年地震的震源位置,我们推测地震在此次地震破裂区域复发的周期可能为150~200a,而极震区以南的深部滑脱断层仍保持闭锁,未来仍有导致灾害性大震的可能性. 相似文献
4.
应用有限单元方法,计算了2015年尼泊尔MS8.1大地震发生产生的同震变形和应力变化.计算中考虑地球为球体以确保远场应力场变化得到可靠结果,采用PREM模型的地球分层模型,考虑了中国地震局(CEA)和美国地质调查局(USGS)各自提供的断层滑动模型.结果表明:尼泊尔MS8.1地震是一个比较典型的低角度逆冲地震,水平位移和应力降较大;地震造成南北方向上的水平位移最突出,且集中在首都加德满都附近区域.USGS断层滑动模型地表最大位移量达到3.5m,CEA滑动模型最大为1.2m;东西向和垂直方向上的同震位移相对较小;同震位移量级在0.1m的影响区域可达300km;地震造成尼泊尔地区最大库仑应力变化可达到MPa量级,地震危险性依然较大.此次MS8.1地震对我国西藏地区有一定影响,特别是雅鲁藏布江地区和拉萨块体南北走向的正断层,库仑应力变化为正,量级可达数千帕乃至十余千帕,应该注意该区被诱发中强震的可能性. 相似文献
5.
尼泊尔MS8.1地震引起中国大陆大量地震观测井水位和水温的同震响应. 从宏观结果看, 在54个同时存在水位和水温同震效应的观测井中, 有51口观测井的变化类型为水位上升-水温上升、 水位下降-水温下降、 水位振荡-水温上升或下降(以下降为主), 井水位与井水温同震效应表现出良好的相关性, 这可能与地下水动力学作用有关; 有3口观测井的水位变化与水温变化方向相反, 且水温变化均为震后效应. 另外, 有1口观测井水位无变化而水温同震效应明显. 这些不同类型的同震变化与井孔条件、 水温梯度、 传感器位置及水位埋深等多种因素有关. 从微观结果看, 井水位同震效应出现的时间及变化幅度与井水温同震效应出现的时间及变化幅度之间的关联性比较复杂, 这与井孔条件和温度梯度等因素有关. 相似文献
6.
7.
利用1999—2007年、2011—2013年的流动GNSS观测资料及处理结果,分析了2013年吉林松原MS5.8地震前区域水平形变场及其变化,获得以下结果:1松原MS5.8级地震发生在地壳运动相对较弱的部位;2发震区带1999—2007年主应变和最大剪切应变几乎为零,为全区应变最薄弱的部位,2011—2013年仍然相对较弱;3发震区带1999—2007年为右旋形变区带,2011—2013年为左右旋形变的转换区带,但量级均较弱;4 1999—2007年发震区形变均较小,在性质上以微弱的右旋形变为优势;2011—2013年全区形变率大于之前,在性质上以左旋形变为优势,较大运动部位大体上以震中为中心且平行于北郯庐断裂以东的区域,这样的变化主要来自于日本9.0级大震的震后调整,但似乎不是导致松原地震发生的诱因。 相似文献
8.
本文采用分层黏弹性介质模型, 模拟了2015年4月25日尼泊尔MS8.1地震产生的同震和震后地表位移场, 计算了尼泊尔大地震引起的青藏高原及其周缘主要断裂上的同震和震后库仑应力变化。 地表位移场结果显示, 此次尼泊尔8.1级地震对中国大陆的影响区域主要是拉萨地块和羌塘地块, 对拉萨块体的影响主要表现为水平向南朝喜马拉雅构造带的汇聚作用, 垂直同震位移以下降为主, 震后以上升为主。 静态库仑破裂应力变化的计算结果显示, 尼泊尔大地震对青藏块体中南部的拉张性断层影响最为显著, 其中, 使尼泊尔地震北部的拉张断层的库仑应力显著增加, 个别断层库仑应力增加量超过0.01MPa, 而使其两侧的拉张断层库仑应力明显降低; 对青藏块体中部的走滑断裂则以正影响为主; 另外, 对南北地震带主要以负影响为主, 但量值微小。 相似文献
9.
2015年4月25日尼泊尔发生了MW7.8地震, 本文基于震前、 震后两景Sentinel-1A雷达影像, 采用D-InSAR两轨差分干涉法提取了此次地震的同震形变场。 结果显示, 同震形变场位于喜马拉雅造山带—主边界逆冲断裂(MBT)和主前锋逆冲断裂(MFT)附近, 形变场整体表现为自西北向往东南方向延伸近150 km的纺锤形包络状, 以大面积隆起抬升形变为主, 视线向最大隆升形变达1.18 m, 抬升区北侧存在一小沉陷区, 以InSAR观测值定位同震最大形变中心。 基于均匀介质弹性半空间模型(Okada模型)与InSAR观测数据反演了断层滑动分布。 反演结果表明该地震属于典型逆冲型地震, 发震断层为主喜马拉雅逆冲断裂(MHT), 同震破裂从主喜马拉雅逆冲断裂(MHT)向上沿着主前锋逆冲断裂(MFT)传递。 基于InSAR同震形变场局部形变细节, 结合震区地质背景、 断裂分布及断层运动特征, 获得了同震破裂拟出露地表迹线。 相似文献
10.
基于2015年尼泊尔地震序列的破裂模型及均匀弹性半空间模型,计算了该地震序列传递到中国西藏境内发生在定日县地震和聂拉木县地震的应力.2015年尼泊尔地震序列导致定日县地震和聂拉木地震节面和滑动方向的库仑应力增加(2~3)×103 Pa和(2.4~3.1)×105 Pa, 表明这两个地震受到尼泊尔地震序列的触发.其次,我们计算了2015年尼泊尔地震序列在中国大陆及其附近主要活动断层上产生的库仑应力变化.喜马拉雅主山前逆冲断裂和青藏高原内部的拉张正断层上的库仑应力有较大的增加,而青藏高原的走滑断裂,如阿尔金断裂、东昆仑断裂、玉树玛曲断裂、班公错断裂西部、嘉黎断裂的库仑应力有较大的降低.天山南北两侧的断裂库仑应力降低.而华北及东北、华南地区的库仑应力变化几乎可以忽略不计.最后,计算了该地震序列造成的水平应力变化.水平面应力在2015年尼泊尔地震序列北向(青藏高原大部和新疆区域)增加(拉张),而在地震序列东侧的西藏南部和川滇地区南部降低(压缩),在华北和东北仅有少许增加,在华南地区有少许降低.在中国西部,主压应力表现为以2015年地震序列为圆心的向外辐射状,而主张应力方向与同心圆切线方向大体一致.水平主压应力方向在东北地区为北东向,在华北地区为北东东向,在华南地区为南东东向.这种模式与现今构造应力场方向相似,表现了2015尼泊尔地震序列所代表的印度板块和欧亚板块的碰撞是中国大陆构造变形的主要动力来源. 相似文献
11.
以2015年4月26日MS7.1余震为经验格林函数事件,利用全国和全球的宽频带记录提取了2015年4月25日尼泊尔MS8.1地震的P波视震源时间函数和Rayleigh波视震源时间函数,并通过联合反演这些视震源时间函数获得了这次地震的时空破裂过程图像.无论是P波视震源时间函数还是Rayleigh波视震源时间函数都呈现出很强的方位依赖性,表明震源断层具有相当的尺度且破裂朝东南方向扩展.时空破裂过程图像清楚地证实了这一特征,并更清晰地显示,破裂几乎是纯粹的单侧破裂,从破裂起始点开始,沿断层面向东南方向扩展~100km,同时沿断层面向深部扩展~80km,形成~125°的破裂优势方向和~5.8m的最大位错.地震的破裂时间历史相对简单,呈非间断性扩展,持续时间约50s. 相似文献
12.
本文介绍了2015年4月25日尼泊尔Mw7.9(MS8.1)地震发生后的破裂过程快速反演工作,以及后续开展的地震波与少量GPS资料的初步联合反演工作.两项工作得到的反演结果尽管在最大滑动量估计方面存在一些差别,但都一致地显示此次地震是发生在低倾角俯冲断裂上的一次单侧破裂事件,破裂主要朝东南方向传播;断层滑动主要发生在震中至加德满都一带.在加德满都附近区域,其下方破裂与朝东南传播的地震波的多普勒聚焦效应可能造成较强的震感和较大的破坏.对比历史大地震发现,2015年尼泊尔Mw7.9地震的浅部破裂紧邻1934年Mw8.2地震的地表破裂,余震分布与1833年M7.6地震的宏观震中基本重合,其破裂填补了前两次地震破裂以西100km左右的空区,表明此次地震是1934年Mw8.2地震与1833年M7.6地震向西继续延伸的结果. 相似文献
13.
利用2001-2003年期间在2015年4月12日尼泊尔MS8.1级强震震源区流动地震观测记录到的连续波形数据,提取了5~25 s周期的瑞利波相速度频散曲线,并构建了尼泊尔地震震源区二维瑞利波相速度分布图像.以0.5°×0.5°为网格大小将研究区网格化,采用NA算法反演得到尼泊尔地震震源地区三维S波速度结构.结果显示,在上地壳,以主前锋逆冲断裂带(MFT)为界,其以北地区为高波速异常,而其以南为明显低波速异常;在中地壳,以藏南拆离系(STDS)为界,南北两侧速度结构也存在明显差别,以南地区为明显高波速异常,而以北地区为明显低波速异常.这些结构特征说明,印度板块与欧亚板块碰撞挤压作用形成地幔热物质上涌并造成地壳物质部分熔融,并由此形成了东西向拉张的南北向裂谷.2015年尼泊尔MS8.1级主震和最大余震均发生于高低波速异常过渡区且偏向高波速异常区,暗示了这样的波速异常区易于积累能量孕育强震.主震和最大余震的南侧均存在明显的低波速异常,与主喜马拉雅滑脱断裂带(MHT)相对应,可能代表部分熔融或深部流体作用于主边界断裂带(MBT)附近的MHT断裂带,降低断层面上的有效正应力,从而触发尼泊尔强震及最大余震的发生.主震与最大余震之间的余震分布于高低波速异常变化较为明显的地区,说明研究区内地震的发生受震源区附近的速度结构控制. 相似文献
14.
采用DInSAR技术和欧空局2014年新发射的Sentinel-1A/IW数据,获取了2015年4月25日尼泊尔M_W7.8地震的InSAR同震形变场.所用InSAR数据扫描范围东西长约500 km,南北宽约250 km,覆盖了整个变形区域,揭示了形变场的全貌及其空间连续变化形态.此次地震造成的地表形变场总体呈现为中部宽两端窄的纺锤形,从震中向东偏南约20°方向延伸,主要形变区东西长约160 km,南北宽约110 km,由规模较大的南部隆升区和规模较小的北部沉降区组成,南部最大LOS向隆升量达1.1 m,北部最大LOS向沉降量约在0.55 m.在隆升和沉降区之间干涉纹图连续变化,没有出现由于形变梯度过大或地表破裂而导致的失相干现象,表明地震断层未破裂到地表.基于InSAR形变场和部分GPS观测数据,利用弹性半空间低倾角单一断层面模型进行了滑动分布单独反演和联合反演,三种反演结果均显示出一个明显的位于主震震中以东的滑动分布集中区,向外围衰减很快,主要滑动发生于地下7~23 km的深度范围内.InSAR单独反演的破裂范围,特别是东西向破裂长度大于GPS单独反演的破裂长度,而InSAR单独反演的最大滑动量则低于GPS单独反演的滑动量.因此认为联合反演结果更为可靠.联合反演的破裂面长约150 km,沿断层倾向宽约70 km,最大滑移量达到4.39 m,矩震级为M_W7.84,与之前用地震波数据和GPS数据反演的结果一致. 相似文献