共查询到19条相似文献,搜索用时 62 毫秒
1.
消减随机噪声是目前陆地地震勘探数据处理的关键问题之一,分析随机噪声的产生机制及特征是对其进行有效压制的先决条件.本文针对中国南方山地金属矿区的勘探环境,根据随机噪声中包含的自然噪声和人文噪声的发声机理分别确定其噪声源函数,以波动方程作为噪声传播模型对山地地区随机噪声进行建模,将随机噪声作为一个综合波场,并且与实际噪声记录进行比较.随机噪声记录作为时空域的二维随机过程,分别对模拟噪声和实际噪声记录的时间域波形(振动图)特征包括频谱、功率谱密度,相空间轨迹图,统计量特征(能量分布,累积分布,均值,方差,峰度,偏度),和空间域波形(波剖面)特征包括波数谱和统计量特征进行比较,对比结果显示在时空域模拟噪声和实际噪声都有基本相同的性质,证明了本文对随机噪声模拟方法的可行性,为进一步研究随机噪声时空域传播特性以及噪声消除奠定理论基础. 相似文献
2.
地震勘探资料噪声压制及信噪比提高是整个地震勘探信号处理过程中的重要任务,随着地震勘探深度的增加及其复杂性,人们对地震数据质量的要求越来越高.勘探环境的复杂化使得采集到的地震资料中有效信号被大量噪声淹没,无法清晰辨识,严重影响后续的数据处理与解释.小波去噪是地震勘探中常用且发展较成熟的一种方法,但是其涉及到的阈值函数选取问题一直令人困扰,虽然已有多种阈值函数被提出,但仍存在各自的缺陷.本文利用小波分解在时域及频域良好的信号细节体现特性,引入模式识别中的非负矩阵分解(NMF)谱分离思想,针对小波系数阈值优化问题,提出了一种小波域图非负矩阵分解(GNMF)消噪算法.该方法首先在小波分解基础上,利用GNMF算法实现小波分解系数谱中信号分量与噪声分量的谱分离,然后通过反变换重构各分离子谱对应的子信号,最后利用K均值聚类算法将得到的多个子信号划分为信号类及噪声类,最终得到重构信号及分离噪声.合成记录和实际地震资料的消噪结果验证了新方法在提高信号与噪声分离准确性和精度方面的有效性,同时新方法避免了阈值选取造成的噪声压制不理想或有效成分损失问题.与小波消噪结果的对比及数值分析也说明了新方法在噪声压制及有效成分保持方面的优势. 相似文献
3.
非局部均值滤波是一种基于图像信息冗余的去噪方法,其认为图像自身的有效结构具有一定的重复性,而随机噪声则不具备这一特点,通过利用图像本身的自相似性来达到压制随机噪声的目的,是一种全局的去噪方法。本文把这一思想引入地震数据随机噪声压制中,针对传统非局部均值滤波计算量过大的问题,文章采用分块非局部均值的方式来减少计算量;针对滤波参数选取会影响非局部均值滤波效果的问题,提出一种简单的自适应滤波参数地震数据分块非局部均值算法。模型和实际数据处理结果表明:相对于传统的去噪算法(如f-x反褶积),该方法在压制随机噪声的同时对有效信号保护地更好,具有更高的保真度,更有利于后续的处理和解释工作。 相似文献
4.
针对地震勘探随机噪声的压制,本文应用拉伸厄米特高斯函数设计出方向可控滤波器.根据时空域上随机噪声的无方向性与有效信号的有向性的区别,通过局部数字特征,对数据进行选择后重组信号.方向选择性的增加,使得滤波过程能与不同方向的轴进行匹配,噪声被压制的同时保持信号的幅度;方向可调性,使得计算效率提高,且所需存储空间减少.仿真实验表明,采用此方法,信号保幅性和去噪效果均比传统的小波算法以及Curvelet变换好,在-5 db信噪比下,本文方法保幅度为92.99%,信噪比提升221.774%,在实际地震信号处理中有明显的抑制噪声、保持有用信号的效果. 相似文献
5.
地震勘探是油气和矿产资源开发领域使用最为广泛的物探方法之一.由于采集条件的限制,地震记录中通常混杂有大量的随机噪声,导致勘探资料普遍信噪比(Signal-to-Noise Ratio,SNR)较低,这严重影响有效信号辨识的精度,为后续反演、解释等工作带来巨大挑战.此外,地震勘探随机噪声通常具有非平稳、非高斯和与信号存在频带混叠等复杂特性,导致传统方法在处理复杂勘探记录时,消噪性能可能发生退化.针对复杂勘探随机噪声消减问题,本文提出了一种新型的双层多尺度特征融合去噪网络(Double-layer Multi-scale Feature Fusion Denoising Network,DMFF-Net).该网络具有多尺度网络结构,利用多分支模块提取勘探数据不同尺度和不同分支的潜在特征,提升网络对于勘探记录复杂特征的学习能力.同时,采用跳跃连接实现浅层和深层信息的融合,提升网络对微弱信号的恢复能力.模拟和实际资料处理结果表明,相较传统地震勘探资料消噪方法而言,DMFF-Net可以更加有效地压制随机噪声,完整恢复有效信号,显著提升地震资料信噪比,在信号保幅性和微弱信号恢复能力方面更具优势. 相似文献
6.
卷积神经网络(CNN)是近几年来最常用的用于有监督学习的深度学习算法之一.DnCNN是一种针对图像去噪问题提出的卷积神经网络.U-Net是一种U型结构的卷积神经网络,特点是融合了不同层次的特征,并在不同问题取得了不错的效果.近几年来多种CNN结构被广泛运用于地震数据的随机噪声压制中,但在地震去噪问题上选择CNN结构时有... 相似文献
7.
本文以提高地震数据的成像质量为目标,提出一种智能的卷积神经网络降噪框架,从带有噪声的地震数据中自适应地学习地震信号。为了加速网络训练和避免训练时出现梯度消失现象,我们在网络中加入残差学习和批标准化的方法,并采用了ReLU激活函数和Adam优化算法优化网络。此外,Marmousi和F3数据集被用来对网络进行训练和测试,经过充分训练的网络不仅能在学习中保留地震数据特征,而且能去除随机噪声。首先充分地训练网络,从中提取出随机噪声,并保留学习到的地震数据特征,之后通过重建地震数据估算测试集中的波形特征。合成记录和实际数据的处理结果显示了深度卷积神经网络在随机噪声压制任务中的潜力,并通过实验验证表明了深度卷积神经网络框架有很好的去噪效果。 相似文献
8.
提高勘探资料信噪比是地震勘探的主要内容之一.本项研究利用短时能量将记录分成能量均衡的若干段,获得减少尺度变换误差的分段时频峰值滤波方法,并运用端点拓展和与地震信号特征匹配的多级时窗参数改进时频峰值滤波精度.理论模型和共炮点资料处理结果表明,分段时频峰值滤波很好地消除了尺度变化误差引起的信号波形阶梯状畸变,能够在压制强随机噪声的同时更好地保留信号特征.对低信噪比勘探资料处理具有较大的应用价值. 相似文献
9.
在地震勘探随机噪声压制领域,噪声通常被假设为平稳、高斯随机过程的信息.然而,在某些情况下,这样的假设并不准确.本文应用现代统计检验方法对地震勘探随机噪声的平稳性、高斯性和线性进行了研究.结果表明地震勘探随机噪声并不是传统意义上认为的平稳随机过程,其平稳性受到噪声时长和采集环境复杂程度的影响.发现噪声时间越长,采集环境越复杂,随机噪声的平稳性越差,但是对于短时长随机噪声而言,其可以近似认为是平稳的.同时,采集环境的复杂程度也影响着随机噪声的高斯性和线性特性,环境条件越复杂,随机噪声高斯性越好,线性特性越差,但总的来说随机噪声可以归为线性非高斯随机过程. 相似文献
10.
径向时频峰值滤波算法是一种有效保持低信噪比地震勘探记录中反射同相轴的随机噪声压制方法,但该算法对空间非平稳地震勘探随机噪声压制效果不理想.本文研究空间非平稳地震勘探随机噪声,即各道噪声功率不同的地震勘探随机噪声,其在径向滤波轨线上表征近似脉冲噪声,在径向时频峰值滤波过程中干扰相邻道滤波结果.为了减小空间非平稳随机噪声的影响,本文提出一种基于绝对级差统计量(ROAD)的径向时频峰值滤波随机噪声压制方法.该方法首先根据径向轨线上信号的绝对级差统计量检测空间非平稳地震勘探随机噪声,然后结合局部时频峰值滤波和径向时频峰值滤波压制地震勘探记录中的随机噪声.将ROAD径向时频峰值滤波方法应用于合成记录和实际共炮点地震记录,结果表明ROAD径向时频峰值滤波方法可以压制空间非平稳地震勘探随机噪声且不损害有效信号,有效抑制随机噪声空间非平稳对滤波结果的影响.与径向时频峰值滤波相比,ROAD径向时频峰值滤波方法更适用于空间非平稳地震勘探随机噪声压制. 相似文献
11.
卷积神经网络(Convolutional Neural Network,CNN)是一种基于数据驱动的学习算法,简化了传统从特征提取到分类的两阶段式处理任务,被广泛应用于计算机科学的各个领域.在标注数据不足的地震数据去噪领域,CNN的推广应用受到限制.针对这一问题,本文提出了一种基于数据生成和增广的地震数据CNN去噪框架.对于合成数据,本文对无噪地震数据添加不同方差的高斯噪声,增广后构成训练集,实现基于小样本的CNN训练.对于实际地震数据,由于无法获得真实的干净数据和噪声来生成训练样本集,本文提出一种直接从无标签实际有噪数据生成标签数据集的方法.在所提出的方法中,我们利用目前已有的去噪方法从实际地震数据中分别获得估计干净数据和估计噪声,前者与未知的干净数据具有相似纹理,后者与实际噪声具有相似的概率分布.人工合成数据和实际数据实验结果表明,相较于F-X反褶积,BM3D和自适应频域滤波算法,本文方法能更好地压制随机噪声和保护有效信号.最后,本文采用神经网络可视化方法对去噪CNN的机理进行了探索,一定程度上解释了网络每一层的学习内容. 相似文献
12.
Random noise attenuation, preserving the events and weak features by improving signal‐to‐noise ratio and resolution of seismic data are the most important issues in geophysics. To achieve this objective, we proposed a novel seismic random noise attenuation method by building a compound algorithm. The proposed method combines sparsity prior regularization based on shearlet transform and anisotropic variational regularization. The anisotropic variational regularization which is based on the linear combination of weighted anisotropic total variation and anisotropic second‐order total variation attenuates noises while preserving the events of seismic data and it effectively avoids the fine‐scale artefacts due to shearlets from the restored seismic data. The proposed method is formulated as a convex optimization problem and the split Bregman iteration is applied to solve the optimization problem. To verify the effectiveness of the proposed method, we test it on several synthetic seismic datasets and real datasets. Compared with three methods (the linear combination of weighted anisotropic total variation and anisotropic second‐order total variation, shearlets and shearlet‐based weighted anisotropic total variation), the numerical experiments indicate that the proposed method attenuates random noises while alleviating artefact and preserving events and features of seismic data. The obtained result also confirms that the proposed method improves the signal‐to‐noise ratio. 相似文献
13.
本文将近些年发展起来的多尺度分析技术——Curvelet变换与求解优化反演问题的阈值迭代法相结合,研究了基于Curvelet变换的阈值迭代法在地震数据随机噪声衰减中的应用。充分利用了Curvelet变换对地震数据表示的稀疏性,提出将地震数据随机噪声压制问题转化为基于Curvelet稀疏变换的L1范数最优化问题,并采用前人提出的阈值迭代法求解。通过与常规的中值滤波、FX反褶积和小波阈值法去噪方法对比,理论合成数据和实际数据试算表明,Curvelet阈值迭代法去噪法具有优势,该法不仅能够获得较高的信噪比,而且对有效信号的损失较小。为充分利甩Curvelet的多尺度、多方向特性,提出了在Curvelet阈值迭代法去噪结果的基础上再进行方向控制,进一步提高了数据信噪比。 相似文献
14.
地震资料去噪是地震数据处理中是必不可少的步骤,随着地震勘探的进步和勘探目的层加深,对地震资料的信噪比和分辨率提出了越来越高的要求.小波分析作为一个新兴的数学方法在地震资料去噪中也有巨大的潜力.本文从小波去噪的特点出发,介绍了小波分频和小波域阈值去噪的特点,并详细总结了地震资料去噪中的小波方法,主要有面波的压制和随机噪声的衰减.最后简要叙述了地震资料小波去噪的一些问题和发展. 相似文献
15.
地震信号中的随机噪声是一种干扰波,严重降低了地震信号的信噪比,并影响着资料的后续处理和分析.本文根据地震信号中有效信号和随机噪声的差异,结合分数阶B样条小波变换与高斯尺度混合模型提出了一种地震信号随机噪声压制方法.首先利用分数阶B样条小波变换将含噪地震信号映射到最优分数阶小波时频域内,然后对各小波子带系数分别建立高斯尺度混合模型,由贝叶斯方法估计出源地震信号小波系数,最后使用分数阶B样条小波逆变换重构得到降噪后的地震信号.利用本文方法对合成地震记录和实际地震信号进行降噪处理,实验结果表明本文方法能够有效地压制地震信号中的随机噪声,并且较好地保留了有效信号. 相似文献
16.
噪声消除是地震勘探资料处理的基础,地震资料信噪比的高低将直接影响到后续处理的效果.因此,选取正确的噪声消除方法是整个资料处理的前提.本文从反射法地震勘探中噪声的特性出发,将常用的去噪方法分为四类,分析了它们的优点和局限性,并且对不同的处理方法进行了简单的比较,介绍了他们的应用领域. 相似文献
17.
地震资料去噪,无论是叠前还是叠后,都是处理中非常重要的内容.随着勘探技术的进步,地球物理界积累和开发的去噪软件已越来越多.对各种去噪方法进行分门别类,阐述其基本原理、物理意义、适用条件、发展前景,既有理论价值又有实际指导意义.本文从噪声的特征出发,首先对地震资料噪声进行了分类;然后综合评述了目前实际生产中常用的几种去噪方法,包括频率域滤波、频率波数域滤波、频率空间域滤波、Radon变换、聚束滤波、基于小波分解和重建的去噪方法等;最后还简述了去噪技术的应用及发展情况. 相似文献
18.
地震资料去噪,无论是叠前还是叠后,都是处理中非常重要的内容.随着勘探技术的进步,地球物理界积累和开发的去噪软件已越来越多.对各种去噪方法进行分门别类,阐述其基本原理、物理意义、适用条件、发展前景,既有理论价值又有实际指导意义.本文从噪声的特征出发,首先对地震资料噪声进行了分类;然后综合评述了目前实际生产中常用的几种去噪方法,包括频率域滤波、频率波数域滤波、频率空间域滤波、Radon变换、聚束滤波、基于小波分解和重建的去噪方法等;最后还简述了去噪技术的应用及发展情况. 相似文献
19.
本文提出了一种新的基于正交多项式变换来压制动校正后CMP道集上随机噪声的方法,将地震资料经过正交多项式变换,建立正交多项式系数谱,该谱描述了地震资料在正交多项式域的能量分布,可以较好地分离有效波和随机噪声,相对于固定阶次的基于正交多项式变换压制噪声的方法,所提出的方法根据能量随阶次变化的规律,自适应确定表达有效信号的正交多项式阶次,既提高了信号和噪声的分离效果,又有效地保护了地震信号中的AVO信息,对人工合成数据和实际资料的处理结果表明了所提出方法的有效性. 相似文献
|