首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The relationship of the interannual variability of the transport and bifurcation latitude of the North Equatorial Current (NEC) to the El Ni o-Southern Oscillation (ENSO) is investigated. This is done through composite analysis of sea surface height (SSH) observed by satellite altimeter during October 1992-July 2009, and correspondingly derived sea surface geostrophic currents. During El Nio/La Ni a years, the SSH in the tropical North Pacific Ocean falls/rises, with maximum changes in the region 0-15°N, 130°E-160°E. The decrease/increase in SSH induces a cyclonic/anticyclonic anomaly in the western tropical gyre. The cyclonic/anticyclonic anomaly in the gyre results in an increase/decrease of NEC transport, and a northward/southward shift of the NEC bifurcation latitude near the Philippine coast. The variations are mainly in response to anomalous wind forcing in the west-central tropical North Pacific Ocean, related to ENSO events.  相似文献   

3.
The data from the Southern Ocean observations of World Ocean Circulation Experiment(WOCE) are used for analysis and illustration of the features and spatial distributions of Circumpolar Deep Water(CDW) in the southern Indian Ocean.It is learnt from the comparison among the vertical distributions of temperature/salinity/oxygen along the 30°E,90°E and 145°E sections respectively that some different features of CDW and the fronts can be found at those longitudes,and those differences can be attributed to the zonal transoceanic flow and the merizonal movement in the Circumpolar Deep Water.In fact,the zonal transoceanic flow is the main dynamic factor for the water exchange between the Pacific Ocean and the Indian Ocean or between the Atlantic Ocean and the Indian Ocean,and for the effects on the spatial distributions of the physical properties in CDW.  相似文献   

4.
Using hydrographic measurements from three recent surveys in the western tropical Pacific, this study revealed the existence and general features of thermohaline finestructure near the northern Philippine coast. Pronounced finestructures were detected in the layers of the North Pacific Tropical Water (NPTW) and the North Pacific Intermediate Water (NPIW) during all three cruises and shown to be mainly thermohaline intrusions. Characteristics of the intrusions were further investigated with spiciness curvature and salinity anomaly methods. The vertical scale of the intrusions was 20-50m and 50-100m in the NPTW and NPIW layers, respectively. Within the NPTW layer, the Turner angle distribution and correlation between salinity and density anomalies suggested that diffusive convection between surface fresh water and subsurface saline water played an important role in the development and maintenance of the intrusions. In addition, connection between thermohaline finestructure and larger-scale oceanic processes was explored using historical hydrographic data. The results reveal that the salinity field and the distribution of the intrusions in this region were largely determined by mesoscale eddies. As a result of eddy stirring, both isopycnal and diapycnal temperature/salinity gradients were strengthened, which gave rise to the development of thermohaline intrusions. The intrusions acted to enhance heat and salt fluxes and resulted in the mixing of water masses being more efficient. By linking mesoscale eddy stirring to micro-scale diffusion, thermohaline finestructure plays a vital role in the ocean energy cascade and water mass conversion in the northern Philippine Sea.  相似文献   

5.
Seasonal variability of the North Equatorial Current (NEC) transport in the western Pacific Ocean is investigated with ECMWF Ocean Analysis/Reanalysis System 3 (eRA-S3). The result shows that NEC transport (NT) across different longitudes in the research area shows a similar double-peak structure, with two maxima (in summer and winter), and two minima (in spring and autumn). This kind of structure can also be found in NEC geostrophic transport (NGT), but in a different magnitude and phase. These differences are attributable to Ekman transport induced by the local meridional wind and transport caused by nonzero velocity at the reference level, which is assumed to be zero in the NGT calculation. In the present work, a linear vorticity equation governing a 1.5-layer reduced gravity model is adopted to examine the dynamics of the seasonal variability of NGT. It is found that the annual cycle of NGT is mainly controlled by Ekman pumping induced by local wind, and westward-propagating Rossby waves induced by remote wind. Further research demonstrates that the maximum in winter and minimum in spring are mostly attributed to wind east of the dateline, whilst the maximum in summer and minimum in autumn are largely attributed to that west of the dateline.  相似文献   

6.
Based on an analysis of drifter data from the World Ocean Circulation Experiment during 1979-1998, the sizes of the eddies in the North subtropical Pacific are determined from the radii of curvature of the drifter paths calculated by using a non-linear curve fitting method. To support the drifter data results, Sea Surface Height from the TOPEX/POSEIDON and ERS2 satellite data are analyzed in connection with the drifter paths. It is found that the eddies in the North Pacific (18^*- 23^*N and 125^*-150^*E) move westward at an average speed of approximately 0.098 ms^-1 and their average radius is 176 km, with radii ranging from 98 km to 298 km. During the nineteen-year period, only 4 out of approximately 200 drifters (2%) actually entered the South China Sea from the area adjacent to the Luzon Strait (18^*-22^*N and 121^*-125^*E) in the winter. It is also found that eddies from the interior of the North Pacific are unlikely to enter the South China Sea through the Luzon Strait.  相似文献   

7.
Results of numerical simulation of currents in the western North Tropical Pacific Ocean by using a barotropic primitive equation model with fine horizontal resolution agreed well with observations and showed that the Mindanao Cyclonic Eddy located north of the equator and east of Mindanao Island exists during most of the year with monthly (and large seasonal) variations in scope . strength and central location . In June , an anticyclonic eddy occurs northeast of Halmahera Island, strengthens to maximum in August , exists until October and then disappears . The observed large-scale circulation systems such as the North Equatorial Current . the Mindanao Current and the North Equatorial Countercurrent are all very well reproduced in the simulations.  相似文献   

8.
Based on the current measurement data from the R/V Ryofu Maru of JMA in the equatorial area along 137°E (1972-83) and 155°E (1972-79) the structures of the zonal velocity of the Equatorial Undercurrent (EUC) and the North Equatorial Countercurrent (NECC) and their variations are systematically analyzed in detail.At 155°E, the current at the equator and 100-300 m depth was a typical eastward EUC, it intensified in 1973-75, i.e., in the non-El Nino period. While the corresponding current at 137°E was mostly westward, and the origin of the EUC shifted to north of the equator around 0.5-1.5°N owing to the influence of the New Guinea Coast. The EUC origin disappeared in early July, 1982. Comparing with the EUC disappearance at 159°W, the average speed of an eastward travelling wave would be~1.1m/s.The velocity core of the NECC at 137 E generally shifted northward in winter and southward in summer, and was stronger in summer and weaker in winter. The fluctuations of the NECC were closely related to thos  相似文献   

9.
The sea level derived from TOPEX/Poseidon(T/P) altimetry data shows prominent long term trend and inter-annual variability.The global mean sea level rising rate during 1993-2003 was 2.9 mm a-1.The T/P sea level trend maps the geographical variability.In the Northern Hemisphere(15°-64°N),the sea level rise is very fast at the mid-latitude(20°-40°N) but much slower at the high-latitude,for example,only 0.5 mm a-1 in the latitude band 40°-50°N.In the Southern Hemisphere,the sea level shows high rising rate both in mid-latitude and high-latitude areas,for example,5.1 mm a-1 in the band 40°-50°S.The global thermosteric sea level(TSL) derived from Ishii temperature data was rising during 1993-2003 at a rate of 1.2 mm a-1 and accounted for more than 40% of the global T/P sea level rise.The contributions of the TSL distribution are not spatially uniform;for instance,the percentage is 67% for the Northern Hemisphere and only 29% for the Southern Hemisphere(15°-64°S) and the maximum thermosteric contribution appears in the Pacific Ocean,which contributes more than 60% of the global TSL.The sea level change trend in tropical ocean is mainly caused by the thermosteric effect,which is different from the case of seasonal variability in this area.The TSL variability dominates the T/P sea level rise in the North Atlantic,but it is small in other areas,and shows negative trend at the high-latitude area(40°-60°N,and 50°-60°S).The global TSL during 1945-2003 showed obvious rising trend with the rate of about 0.3 mm a-1 and striking inter-annual and decadal variability with period of 20 years.In the past 60 years,the Atlantic TSL was rising continuously and remarkably,contributing 38% to the global TSL rising.The TSL in the Pacific and Indian Ocean rose with significant inter-annual and decadal variability.The first EOF mode of the global TSL from Ishii temperature data was the ENSO mode in which the time series of the first mode showed steady rising trend.Among the three oceans,the first mode of the Pacific TSL presented the ENSO mode;there was relatively steady rising trend in the Atlantic Ocean,and no dominant mode in the Indian Ocean.  相似文献   

10.
Based on the statistics of surface drifter data of 1979–2011 and the simulation of nuclear pollutant particulate movements simulated using high quality ocean reanalysis surface current dataset, the transport pathways and impact strength of Fukushima nuclear pollutants in the North Pacific have been estimated. The particulates are used to increase the sampling size and enhance the representativeness of statistical results. The trajectories of the drifters and particulates are first examined to identify typical drifting pathways. The results show that there are three types of transport paths for nuclear pollutants at the surface: 1) most pollutant particles move eastward and are carried by the Kuroshio and Kuroshio-extension currents and reach the east side of the North Pacific after about 3.2–3.9 years; 2) some particles travel with the subtropical circulation branch and reach the east coast of China after about 1.6 years according to one drifter trajectory and about 3.6 years according to particulate trajectories; 3) a little of them travel with local, small scale circulations and reach the east coast of China after about 1.3–1.8 years. Based on the particulates, the impact strength of nuclear pollutants at these time scales can be estimated according to the temporal variations of relative concentration combined with the radioactive decay rate. For example, Cesium-137, carried by the strong North Pacific current, mainly accumulates in the eastern North Pacific and its impact strength is 4% of the initial level at the originating Fukushima area after 4 years. Due to local eddies, Cesium-137 in the western North Pacific is 1% of the initial pollutant level after 1.5 years and continuously increases to 3% after 4 years. The vertical movement of radioactive pollutants is not taken into account in the present study, and the estimation accuracy would be improved by considering three-dimensional flows.  相似文献   

11.
Monthly ocean temperature from ORAS4 datasets and atmospheric data from NCEP/NCAR Reanalysis I/II were used to analyze the relationship between the intensity of the South Asian summer monsoon(SASM) and upper ocean heat content(HC) in the tropical Indo-Pacific Ocean.The monsoon was differentiated into a Southwest Asian Summer Monsoon(SWASM)(2.5°–20°N,35°–70°E) and Southeast Asian Summer Monsoon(SEASM)(2.5°–20°N,70°–110°E).Results show that before the 1976/77 climate shift,the SWASM was strongly related to HC in the southern Indian Ocean and tropical Pacific Ocean.The southern Indian Ocean affected SWASM by altering the pressure gradient between southern Africa and the northern Indian Ocean and by enhancing the Somali cross-equatorial flow.The tropical Pacific impacted the SWASM through the remote forcing of ENSO.After the 1976/77 shift,there was a close relationship between equatorial central Pacific HC and the SEASM.However,before that shift,their relationship was weak.  相似文献   

12.
Wang  Yu  Li  Yuanlong  Wei  Chuanjie 《中国海洋湖沼学报》2020,38(1):16-29
Subtropical sea surface salinity(SSS) maximum is formed in the subtropical South Indian Ocean(SIO) by excessive evaporation over precipitation and serves as the primary salt source of the SIO. Spaceborne SSS measurements by Aquarius satellite during September 2011–May 2015 detect three disconnected SSS maximum regions(35.6) in the eastern(105°E–115°E, 38°S–28°S), central(60°E–100°E, 35°S–25°S), and western(25°E–40°E, 38°S–20°S) parts of the subtropical SIO, respectively. Such structure is however not seen in gridded Argo data. Analysis of Argo pro?le data con?rms the existence of the eastern maximum patch and also reveals SSS overestimations of Aquarius near the western and eastern boundaries. Although subjected to large uncertainties, a mixed-layer budget analysis is employed to explain the seasonal cycle of SSS. The eastern and central regions reach the highest salinity in February–March and lowest salinity in August–September, which can be well explained by surface freshwater forcing(SFF) term. SFF is however not controlled by evaporation( E) or precipitation( P). Instead, the large seasonal undulations of mixed layer depth(MLD) is the key factor. The shallow(deep) MLD in austral summer(winter) ampli?es(attenuates) the forcing ef fect of local positive E-P and causes SSS rising(decreasing). Ocean dynamics also play a role. Particularly, activity of mesoscale eddies is a critical factor regulating SSS variability in the eastern and western regions.  相似文献   

13.
The formulation and justification of a three-layer baroclinic ocean model developed to simulate thegeneral circulation of the ocean are described in this paper.Test of the model in simulating the annualmean circulation patterns in the North Pacific under the prescribed atmospheric forcing,which consists ofthe climatological surface wind stress and sea surface heat flux,and comparison of the results withobservations showed that the model basically simulated the large scale features of the annual meancirculation patterns in the North Pacific Ocean such as those of the intensified western boundary currentsand the North Equatorial Currents and Undercurrents.But due to the coarse resolution of the model,some details of these currents were poorly reproduced.The seasonal variations of the North Pacific Oceancirculation driven by the seasonal mean sea surface wind stress was calculated,the different aspects of theseresults were analyzed and the main current(the intensified western boundary currents)transports we  相似文献   

14.
Observational data obtained during the TOGA-COARE IOP in the "warm pool" area of the West-ern Tropical Pacific were used to analyze some characteristics of the intraseasonal variations in the mixedlayer. The influence of westerly burst and rainfall on SST, salinity. and mixed layer depth are discussed.There are two pairs of counteracting processes in the "warm pool" mixed layer: (1) The increase of mixedlayer depth caused by local westerly bursts and the decrease of mixed layer depth caused by larger scaleeasterly relaxation;(2) the vertical mixing by local wind and the strong stratification due to rainfall in themixed layer. Some possible mechanisms through the interactions between the intraseasonal time scale varia-tions of the oceanic mixed layer and atmospheric low frequency oscillations are revealed.  相似文献   

15.
Yang  Bing  Hou  Yijun  Li  Min 《中国海洋湖沼学报》2019,37(3):938-956
Based on in-situ observation, satellite and reanalysis data, responses of the western North Pacific subtropical ocean(WNPSO) to the slow-moving category 5 super typhoon Nanmadol in 2011 are analyzed. The dynamical response is dominated by near-inertial currents and Ekman currents with maximum amplitude of 0.39 m/s and 0.15 m/s, respectively. The near-inertial currents concentrated around 100 m below the sea surface and had an e-folding timescale of 4 days. The near-inertial energy propagated both upward and downward, and the vertical phase speed and wavelength were estimated to be 5 m/h and 175 m, respectively. The frequency of the near-inertial currents was blue-shifted near the surface and redshifted in ocean interior which may relate to wave propagation and/or background vorticity. The resultant surface cooling reaches -4.35℃ and happens when translation speed of Nanmadol is smaller than 3.0 m/s.When Nanmadol reaches super typhoon intensity, the cooling is less than 3.0℃ suggesting that the typhoon translation speed plays important roles as well as typhoon intensity in surface cooling. Upwelling induced by the slow-moving typhoon wind leads to typhoon track confined cooling area and the right-hand bias of cooling is slight. The mixed layer cooling and thermocline warming are induced by wind-generated upwelling and vertical entrainment. Vertical entrainment also led to mixed layer salinity increase and thermocline salinity decrease, however, mixed layer salinity decrease occurs at certain stations as well. Our results suggest that typhoon translation speed is a vital factor responsible for the oceanic thermohaline and dynamical responses, and the small Mach number(slow typhoon translation speed) facilitate development of Ekman current and upwelling.  相似文献   

16.
An approach to prediction of the South China Sea summer monsoon onset   总被引:1,自引:0,他引:1  
In the present paper, correlation between the South China Sea summer monsoon (SCSSM) onset and heat content in the upper layer of the warm pool in the western Pacific Ocean is examined using the Scripps Institution of Oceanography dataset for the period of 1955-1998 and an approach to prediction the SCSSM onset is proposed. Correlation showes that there exists interdecadal variability of the SCSSM onset demarcated by 1970 with the largest correlation coefficient in the area west of the center of the warm pool rather than near its centers, implying certain effect from other factors involved besides ENSO. As the correlation is poor for the period before 1970, the heat content anomaly of the warm pool after 1970 is used to indicate early or late onset of the SCSSM beforehand. An ideal representative area (1°×1°) for the warm pool heat content was determined with its center at 3°N/138°E. The nearest TAO (TAO-Tropical Atmosphere Ocean-array) mooring to the center is at 2°N/137°E, and chosen to calculate the heat content for prediction. It is suggested that the TAO mooring at 2°N/137°E could be used to predict the SCSSM onset with the heat content in the upper layer, if the correlation between the SCSSM onset and the heat content of the warm pool runs like that of after 1970. On the other hand, if the situation does like the one before 1970, the representative station is determined at 13°S/74°E with relatively poor correlation, meaning that the warm pool in the western Pacific Ocean plays more important role in the SCSSM onset than the Indian Ocean.  相似文献   

17.
The dynamics of the teleconnection between the Indian Ocean Dipole(IOD) in the tropical Indian Ocean and El Ni?o-Southern Oscillation(ENSO) in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations. The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean, which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO. In comparison, lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant, suggesting the short memory of the atmospheric bridge. A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans. The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%–15% depending on the baroclinic modes. The IOD-ENSO teleconnection is found to get stronger in the past century or so. Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century, which is found sensitive to the global warming forcing.The dynamics of the teleconnection between the Indian Ocean Dipole(IOD)in the tropical Indian Ocean and El Ni?o-Southern Oscillation(ENSO)in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations.The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean,which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO.In comparison,lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant,suggesting the short memory of the atmospheric bridge.A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans.The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%–15%depending on the baroclinic modes.The IOD-ENSO teleconnection is found to get stronger in the past century or so.Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century,which is found sensitive to the global warming forcing.  相似文献   

18.
The thermal condition anomaly of the western Pacific warm pool and its zonal displacement have very important influences on climate change in East Asia and even the whole world. However, the impact of the zonal wind anomaly over the Pacific Ocean on zonal displacement of the warm pool has not yet been analyzed based on long-term record. Therefore, it is important to study the zonal displacement of the warm pool and its response to the zonal wind anomaly over the equatorial Pacific Ocean. Based on the NCDC monthly averaged SST (sea surface temperature) data in 2°×2° grid in the Pacific Ocean from 1950 to 2000, and the NCEP/NCAR global monthly averaged 850 hPa zonal wind data from 1949 to 2000, the relationships between zonal displacements of the western Pacific warm pool and zonal wind anomalies over the tropical Pacific Ocean are analyzed in this paper. The results show that the zonal displacements are closely related to the zonal wind anomalies over the western, central and eastern equatorial Pacific Ocean. Composite analysis indicates that during ENSO events, the warm pool displacement was trigged by the zonal wind anomalies over the western equatorial Pacific Ocean in early stage and the process proceeded under the zonal wind anomalies over the central and eastern equatorial Pacific Ocean unless the wind direction changes. Therefore, in addition to the zonal wind anomaly over the western Pacific, the zonal wind anomalies over the central and eastern Pacific Ocean should be considered also in investigation the dynamical mechanisms of the zonal displacement of the warm pool.  相似文献   

19.
The linkage between physical and biological processes is studied by applying a one-dimensional physical-biologicalcoupled model to the Sargasso Sea. The physical model is the Princeton Ocean Model and the biological model is a five-componentsystem including phytoplankton, zooplankton, nitrate, ammonium, and detritus. The coupling between the physical and biologicalmodel is accomplished through vertical mixing which is parameterized by the level 2.5 Mellor and Yamada turbulence closurescheme. The coupled model investigates the annual cycle of ecosystem production and the response to external forcing, such as heatflux, wind stress, and surface salinity, and the relative importance of physical processes in affecting the ecosystem. Sensitivity ex-periments are also carried out, which provide information on how the model bio-chemical parameters affect the biological system.The computed seasonal cycles compare reasonably well with the observations of the Bermuda Atlantic Time-series Study (BATS).The spring bloom of phytoplankton occurs in March and April, right after the weakening of the winter mixing and before the estab-lishment of the summer stratification. The bloom of zooplankton occurs about two weeks after the bloom of phytoplankton. The sen-sitivity experiments show that zooplankton is more sensitive to the variations of biochemical parameters than phytoplankton.  相似文献   

20.
The Sea Level Anomaly-Torque (SLAT, relative to a reference location in the Pacific Ocean), which means the total torque of the gravity forces of sea waters with depths equal to the Sea Level Anomaly (S/A) in the tropical Pacific Ocean, is defined in this study. The time series of the SLAT from merged altimeter data (1993-2003) had a great meridional variation during the 1997-1998 E1 Nifio event. By using historical upper layer temperature data (1955-2003) for the tropical Pacific Ocean, the temperature-based SLAT is also calculated and the meridional variation can be found in the historical E1 Nifio events (1955-2003), which suggests that the meridional shifts of the sea level anomaly are also intrinsic oscillating modes of the E1 Nifio cycles like the zonal shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号