共查询到16条相似文献,搜索用时 78 毫秒
1.
为了得到稳定的弹 性波数值模拟,而不得不选择隐式差分方程;为了提高解的精度,又不得不增加节点数目, 但同时也降低了隐式迭代求解的收敛速度. 为此,本文使用隐式差分的多重网格算法进行弹 性波数值模拟,多重网格算法通过粗网格收敛较快的迭代过程求出近似解,以近似解为初值 使用细网格进行精确的迭代求解,从而加速了隐式迭代求解的过程,能够以较高计算速度、 精度、稳定性完成弹性波传播过程的数值模拟. 相似文献
2.
针对弹性波数值模拟, 现有的时间高阶有限差分方法主要基于显式差分和正方形网格单元建立的, 因此容易引起较强数值频散且缺乏灵活性.基于上述问题, 本文通过结合十字形和菱形模板设计了一种改进的矩形组合差分模板, 在此基础上发展了隐式交错网格差分方法求解弹性波方程.该方案采用改进差分模板和二阶离散格式共同近似时间导数, 采用隐式差分格式求解空间导数.进一步给出了泰勒级数展开和最小二乘优化两种算法求取的高阶差分系数.联合应用高阶差分方案和波场分离技术产生高精度的弹性波场.将本文方法与几种现有差分方法进行了对比, 包括: 显式和隐式时间二阶差分法, 显式时间高阶差分法.数值分析和模型算例表明, 本文方法比其他方法具有更高的精度和灵活性. 相似文献
3.
本文应用交错网格高阶有限差分方法模拟弹性波在三维各向同性介质中的传播。采用时间上二阶、空间上高阶近似的交错网格高阶差分公式求解三维弹性波位移-应力方程,并在计算边界处应用基于傍轴近似法得到的三维弹性波方程吸收边界条件。在此基础上进行了三维盐丘地质模型的地震波传播数值模拟试算。试算结果表明该方法模拟精度高,在很大程度上减小了数值频散,绕射波更加丰富,而且适用于介质速度具有纵向变化和横向变化的情况。 相似文献
4.
弹性波逆时偏移是一种高精度的复杂构造地震成像方法.然而,在传统的基于矩形网格离散化的逆时偏移中,介质界面通常会产生畸变.另外,因使用双程波动方程进行波场延拓,其产生的反射波会在成像过程中产生偏移假象.为解决这些问题,本文提出了一种拟空间域弹性波方程高阶交错网格有限差分格式,并给出了差分格式的稳定性条件,进而实现了高精度的拟空间域弹性波方程有限差分逆时偏移.模型实验表明,若在计算拟空间域采样间隔时引入速度界面信息,则拟空间域弹性波方程高阶交错网格有限差分逆时偏移能够避免常规弹性波方程逆时偏移中弯曲界面形态畸变问题;此外基于该方法进行波场延拓时可有效压制弯曲界面的假散射现象,并能有效压制层间反射波,因此可以减少剖面上的偏移假象,从而显著提高成像的质量. 相似文献
5.
在地震波场数值模拟中, 交错网格有限差分技术得到了广泛的应用, 但是在弹性模量变化较大时, 通常会因插值而导致模拟误差增大. 旋转交错网格可以很好地克服这个缺点, 因而适合于各向异性介质正演模拟. 但是对于同样大小的网格单元, 旋转交错网格需要的步长比常规交错网格要大, 这会使梯度和散度算子的误差增大因而更易产生空间数值频散. 针对这些问题, 本文提出了旋转交错网格与紧致有限差分相结合的方法, 并基于模拟退火算法进行全局优化, 压制数值频散, 拓宽波数范围. 数值模拟结果表明, 此方法可以有效地压制数值频散, 且具有较高的模拟精度. 相似文献
6.
推导了二阶改进Higdon吸收边界条件.利用空间上具有四阶精度、时间上具有二阶精度的中心差分方法。数值模拟了几种复杂井眼条件下的波场.给出了正交各向异性介质地层条件和椭圆井眼条件下波场模拟的结果.考查并分析了单极子源和偶极子源条件下的波场特性,所得结论与弹性波传播理论一致.通过计算表明,利用改进的Higdon吸收边界条件,声波测井三维模拟程序可用于复杂井眼各向异性地层条件的波场传播模拟. 相似文献
7.
有限差分方法是波场数值模拟的一个重要方法,交错网格差分格式比规则网格差分格式稳定性更好,但方法本身都存在因网格化而形成的数值频散效应,这会降低波场模拟的精度与分辨率.为了缓解有限差分算子的数值频散效应,精确求解空间偏导数,本文把求解波动方程的线性化方法推广到用于求解弹性波方程交错网格有限差分系数;同时应用最大最小准则作为模拟退火(SA)优化算法求解差分系数的数值频散误差判定标准来求解有限差分系数.通过上述两种方法,分别利用均匀各向同性介质和复杂构造模型进行了数值正演模拟和数值频散分析,并与传统泰勒展开算法、最小二乘算法进行比较,验证了线性化方法和模拟退火方法都能有效压制数值频散,并比较了各个算法的特点. 相似文献
8.
有限差分方法因其操作简单、计算消耗低而成为地震勘探领域中最为常用的数值模拟方法之一, 然而用离散的显式差分算子数值逼近地震波动方程中的连续导数容易导致数值频散, 并且基于正方形网格离散形式的有限差分方法对不同地质模型的适应性较低.针对一阶变密度声波方程的数值模拟, 本文发展了一种适用于矩形网格离散形式的时间高阶空间隐式有限差分格式, 可以有效压制时间和空间频散, 同时灵活的网格剖分增强了其应用的广泛性.基于本文矩形交错网格时间高阶空间隐式有限差分格式的时空域频散关系和变量替换的思想, 首先采用泰勒级数展开方法求解不同方向的非轴上时间差分系数及轴上空间差分系数, 使本文差分格式可以获得任意偶数阶时间和空间精度.为了进一步提高本文差分格式在更大波数区域的空间模拟精度, 我们采用线性优化方法来求取新的轴上空间差分系数用于一阶变密度声波方程的波场迭代求解中.频散、稳定性分析及数值模拟算例表明: 相比于传统十字形空间域隐式有限差分格式, 本文矩形交错网格时间高阶空间隐式有限差分格式在精度、稳定性和效率方面均具有优势. 相似文献
9.
给出了在非均匀横向各向同性(TI)介质情况下,四阶时间精度、高阶空间精度的一阶速度-应力P-SV波的波动方程交错网格有限差分解法.首先根据一阶速度(应力)波动方程把速度(应力)对时间的一阶和三阶导数转换为应力(速度)对空间的导数,从而在使用四阶时间精度有限差分格式计算某一时刻的波场时只需要前面两个时间步的波场值;然后在空间上采用高阶有限差分格式以提高数值模拟的精度.数值模拟结果和实测垂直地震剖面(VSP)记录符合得很好,说明该方法是可行的. 相似文献
10.
地震波正演模拟是地震反演与成像的基础和关键,有限差分算法广泛应用于地震波数值模拟,差分算子的精度直接影响数值模拟的质量和效率.本文提出一种BFO-PSO算法下的有限差分算子优化方法,并应用其进行弹性波数值模拟.首先,将BFO算法中的趋化、复制、驱散三个步骤引入PSO算法,形成具有更好全局搜索能力和更快收敛速度的BFO-... 相似文献
11.
Introduction The real Earth usually presents anisotropy. Therefore, it is of theoretical and practical sig- nificance for many fields as oil and gas, seismic exploration and production, earthquake prediction, detection of deep structure and so on to study on seismic wave theory, numerical simulation method and its applications in the anisotropic media (Crampin, 1981, 1984; Crampin et al, 1986; Hudson et al, 1996; Liu et al, 1997; Thomsen, 1986, 1995; TENG et al, 1992; HE and ZHANG, 1996)… 相似文献
12.
本文从有限差分法数值模拟技术的各个方面对地震波有限差分模拟的发展和现状进行了论述.波场的数值模拟技术是认识地震波传播规律,检验各种处理方法正确性的重要工具,地震波的数值模拟是地震波传播规律研究的必要手段,贯穿于地震资料的采集、处理、解释的整个过程中.有限差分法数值模拟技术相对于射线方法具有更高的精度,同时比有限元方法计算量小,因此在实际应用中占很重要的地位. 相似文献
13.
如何有效压制数值频散是有限差分正演模拟研究中的关键问题之一.近年来,许多学者对二阶声波方程的差分算子开展了大量的优化工作,在压制频散方面取得不错的效果.一阶压强-速度方程广泛用于研究地震波在地下变密度模型中传播规律,目前针对一阶方程的优化工作大多只是在空间差分算子上展开.本文在前人研究的基础上,推导出一阶声波方程中压强场与偏振速度场之间的解析关系,据此在传统交错网格基础上给出一种高精度的显式时间递推格式,该递推格式将时间差分与空间差分算子结合在一起,并采用共轭梯度法得到精确时间递推匹配系数,实现时空差分算子的同时优化.在编程实现算法的基础上,通过频散分析与三个典型模型测试表明:本文方法能够较为有效地压制时间频散与空间频散,提高数值计算精度;同时对复杂模型也有很好适用性. 相似文献
14.
交错网格高阶差分方法是一种在保持效率的前提下提高弹性波模拟精度的有效方法.本文将可变空间网格与变化的时间步长技术引入到交错网格高阶差分弹性波模拟中,提出一种空间网格可任意奇数倍变化与时间步长任意变化的交错网格高阶差分弹性波模拟方法.一系列数值试验表明,该方法能够在保证模拟精度的同时,通过有效降低空间与时间维度上的过采样来显著提高弹性波模拟的效率.同时,该方法还能够精细刻画含孔缝洞介质以及横向变化剧烈介质的局部细微结构,减小弹性波模拟误差,提高介质细微结构处的弹性波传播模拟精度. 相似文献
15.
将弹性波方程变换至Hamilton体系, 构造适用于弹性波模拟的高效显式二阶辛Runge-Kutta-Nyström (RKN)格式, 运用根数理论得到此格式的阶条件方程组. 通过给定系数的限定条件, 得到方程的对称解. 为了使时间离散误差达到极小,提出数值频率与真实频率比较,通过Taylor展开,得到关于辛系数的限定方程,求解方程组得到最小频散辛RKN格式. 对比分析时间演进方程的稳定性,得到使库朗数达到极大值的限定方程,求解方程组得到最稳定辛RKN格式. 发现此两种格式为同一格式. 新得到的辛RKN格式不依赖于空间离散方法,为了对比的需要,选取有限差分法进行空间离散. 在频散、稳定性分析中,与常见辛格式对比,从理论上分析了本文提出的格式在数值频散压制、稳定性提升等方面的优势, 数值实验进一步证实了理论分析的正确性. 相似文献
16.
传统的高阶有限差分波动方程数值模拟方法采用高阶差分算子近似空间偏导数,能有效抑制空间频散.然而,传统的有限差分法仅采用二阶差分算子近似时间偏导数,这使得地震波场沿时间外推的精度较低.当采用较大的时间采样间隔,传统的有限差分法模拟波场会出现明显的时间频散,甚至不稳定.本文基于新的差分结构和中心网格剖分,发展了一种空间任意偶数阶精度、时间四阶和六阶精度的时空域有限差分方法.基于对离散后的频散关系进行泰勒展开,本文推导了时空域高阶有限差分算子的差分系数.相速度分析表明时间四阶、六阶精度的差分方法能显著地减小传统时间二阶精度差分方法的时间频散.在相同的精度下与传统差分法比较,本文发展的时间四阶、六阶有限差分方法的计算效率比传统方法高.均匀和非匀均介质中的波场数值模拟实验进一步证实本文研究的时空高阶有限差分方法的优越性. 相似文献
|