首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 718 毫秒
1.
芦山7.0级地震序列的震源位置与震源机制解特征   总被引:7,自引:0,他引:7       下载免费PDF全文
基于中国国家和四川区域数字地震台网记录,采用HypoDD方法精确定位了四川芦山ML2.0级以上地震序列的震源位置,采用CAP方法反演了36次ML4.0级以上地震的最佳双力偶震源机制解,并利用小震分布和区域应力场拟合了可能存在的发震断层面参数,从而综合分析了芦山地震序列的震源深度、震源机制和震源破裂面特征,探讨可能的发震构造.结果显示,7.0级主震的震源位置为30.30°N、102.97°E,初始破裂深度为15 km左右,震源矩心深度为14 km左右,最佳双力偶震源机制解的两组节面分别为走向209°/倾角46°/滑动角94°和走向23°/倾角44°/滑动角86°,可视为纯逆冲型地震破裂,绝大多数ML4.0级以上余震的震源机制也表现出与主震类似的逆冲破裂特征.ML2.0级以上余震序列发生在主震两侧,集中分布的长轴为30 km左右,震源深度主要集中在5~27 km,ML3.5级以上较大余震则集中分布在9~25 km的深度上,并揭示出发震断层倾向北西的特征.利用小震分布和区域应力场拟合得到发震断层参数为走向207°/倾角50°/滑动角92°,绝大多数余震发生在断层面附近10 km左右的区域.综合地震序列分布特征、主震震源深度和已有破裂过程研究结果,可以推测主震破裂过程自初始点沿断层的两侧扩展破裂,南侧破裂比北侧稍长,滑动量主要集中在初始破裂点附近,可能没有破裂到地表.综合本文研究成果、地震烈度分布和现有的科学考察结果,初步推测发震构造为龙门山山前断裂,也不排除主震震中东侧还存在一条未知的基底断裂发震的可能性.  相似文献   

2.
2021年7月18日—8月7日,宁夏吴忠—灵武地区发生ML3.6显著震群活动。本文利用多阶段定位方法对该震群进行了重新定位,并根据gCAP方法反演了2021年7月20日灵武ML3.6地震的震源机制及震源矩心深度,采用Snoke方法计算了震群中3次ML3.0以上地震的震源机制,测定了同一地震多个震源机制的中心解。结果表明,该震群中最大的地震即7月20日02时40分ML3.6地震的震源机制为节面Ⅰ走向289°,倾角72°,滑动角?22°,节面Ⅱ走向26°,倾角69°,滑动角?161°,震源矩心深度为12 km,初始破裂深度为12.5 km;7月20日03时15分ML3.2地震的震源机制为节面Ⅰ走向290°,倾角82°,滑动角?2°,节面Ⅱ走向20°,倾角88°,滑动角?172°,初始破裂深度为11.9 km;7月21日04时55分ML3.1地震的震源机制为节面Ⅰ走向285°,倾角53°,滑动角2°,节面Ⅱ走向194°,倾角88°,滑动角143°,初始破裂深度为11.6 km,这些地震震源机制的主压应力轴主要为NE向。该震群序列的震源深度主要相对集中在7—15 km之间,其中ML3.0以上地震的震源深度主要介于11—13 km,震源深度剖面显示震群相对集中的区域由深到浅大体呈现近似于陡立的展布。本文进一步研究发现区域应力场在灵武ML3.6地震震源机制NNE向节面产生的相对剪应力为0.393,而在NWW向节面产生的相对剪应力为0.945。结合地质构造和已有断层资料初步分析认为,若NNE向的崇兴隐伏断裂为灵武ML3.6地震的发震断层,则表明崇兴断裂可能是一条断裂薄弱带,地震破裂方式主要为右旋走滑;若NWW向的未知隐伏断裂为发震断层,则表明NWW向断裂可能为该地震在区域应力场下的剪应力相对最大释放节面,其破裂方式为左旋走滑。   相似文献   

3.
2020年6月9日宁夏中卫市沙坡头区发生ML3.4地震,该地震发生在1709年中卫南7?级地震的极震区内,且震中位于以往弱震相对偏少的地区。本文利用宁夏区域地震台网的波形记录,采用gCAP方法反演了2020年6月9日中卫ML3.4地震的震源机制解及震源矩心深度,并用Hash方法计算其震源机制解,且得出了两种方法的震源机制中心解。结果表明,gCAP方法的震源机制解为:节面I走向255°,倾角79°,滑动角?20°;节面II走向348°,倾角70°,滑动角?168°,震源矩心深度为12 km。而Hash方法的震源机制解为:节面I走向344°,倾角89°,滑动角176°;节面II走向74°,倾角86°,滑动角1°。两种方法的震源机制中心解为:节面I走向255°,倾角87°,滑动角?11°;节面II走向346°,倾角80°,滑动角?176°,主压应力轴走向主要为NE向,其中gCAP方法结果与震源机制中心解的最小空间旋转角相对最小,为12.09°。结合过去地质构造资料,推测2020年6月9日中卫ML3.4地震的主要错动方式为左旋走滑,且断层面为NEE向节面的可能性较大。   相似文献   

4.
2011年1月19 日安庆ML4.8地震的震源机制解和深度研究   总被引:19,自引:7,他引:12       下载免费PDF全文
2011年1月19日在安徽省安庆市辖区与怀宁县交界处发生了ML4.8级地震,引起安庆市及周边地区强烈的震感.为了更好地认识这次地震的发震构造,我们利用安徽省及临近几个省份区域台网的近震波形资料,首先通过hypo2000绝对定位得到震中位置;然后采用CAP方法反演了该地震的震源机制解和震源深度,并在此基础上结合P、sP、pP和sPmP等深度震相对震源深度进行了精确确定;最后,将反演得到的结果作为已知输入,利用F-K方法计算理论地震图,并与观测记录进行对比,以验证结果的可靠性.反演结果显示,这次安庆地震是一个带少量走滑分量的逆冲型地震,地震矩震级为MW=4.3,最佳双力偶解为节面Ⅰ走向131°,倾角30°,滑动角29°;节面Ⅱ走向15°,倾角75°,滑动角116°,最佳震源深度为4~5 km,属于浅源地震.从震中和震源机制解来看,安庆地震极有可能发生在宿松-枞阳断裂上.  相似文献   

5.
2017年8月9日新疆精河发生MS6.6地震,深入了解该地震的构造应力背景及其所破裂断层的活动特性对理解其孕震过程及震后的地震危险性估计十分重要.本研究自GCMT目录收集了2017年8月9日新疆精河MS6.6地震震中及其邻区的253个震源机制解,应用MSATSI软件反演了该地震及其邻区的应力场.反演结果显示,西北区域应力场的最大主压应力轴的方位从西到东呈现出NNW-NS-NNE的渐变过程,东南区域应力场最大主压应力轴的方位稳定于NNE向,倾角都较小;最大主张应力轴都基本沿东西向,倾角相对较大;西北区域较大的R值显示出区域应力场主要受近NS向水平挤压作用,中部挤压分量相对较大,西部和东部挤压分量相对较小.根据所反演的区域构造应力场,结合发震的库松木契克山前断裂的地质调查参数,估算该断裂的理论滑动角为137.7°,误差为21.3°,验证了地质上得到的库松木契克山前断裂的逆冲兼右旋走滑性质.判断该断裂滑动性质的另一种方法是通过发生在该断裂上地震的震源机制验证.本研究首先计算了发生在库松木契克山前断裂不同机构给出的震源机制节面在所反演的局部应力场作用下的理论滑动角,发现理论滑动角与实际地震震源机制滑动角相差很小,验证了反演的局部应力场的正确性;而后计算了局部应力场作用下的库松木契克山前断裂上的理论震源机制与实际发生地震震源机制的三维空间旋转角,发现两者在给定的误差范围内是一致的.本研究自地球物理角度确证了库松木契克山前断裂的滑动性质,为该地区的地震孕育环境、地震活动性和地球动力学研究提供了基础.  相似文献   

6.
基于中国国家和区域数字地震台网记录,采用CAP方法反演了2012年9月7日云南彝良5.7、5.6级地震的震源机制解和震源深度,并利用IRIS提供的远震记录深度震相(P、PP、SP)进一步确定了震源深度,最后结合地震序列分布、地震烈度分布和区域地质背景讨论了发震构造.结果显示彝良5.7级地震的震源机制解为节面I走向243°、倾角62°、滑动角149°,节面Ⅱ走向349°、倾角63°、滑动角32°;5.6级地震的震源机制解为节面I走向241°、倾角37°、滑动角162°,节面Ⅱ走向346°、倾角79°、滑动角54°,这两次地震的发震构造均为NE走向的石门断裂,震源矩心深度均为6 km左右,表明地震的能量释放主要发生在地壳浅部,这也是导致震区严重灾害的一个重要原因.  相似文献   

7.
杨帆  盛书中  胡晓辉  崔华伟 《地震》2021,41(4):93-105
基于国家测震台网数据中心提供的波形资料, 采用gCAP方法反演2020年5月18日云南巧家M5.0地震及研究区域51次地震震源机制解, 并收集研究区域震源机制解50个。 采用网格搜索法反演区域构造应力场, 并对研究区域采用不同划分进行应力场反演。 获得以下结论: ① 主震震源机制解节面Ⅰ的走向、 倾角和滑动角分别为175°、 67°和-19°, 节面Ⅱ的走向、 倾角和滑动角分别为273°、 73°和-156°, 矩震级为4.97, 矩心深度为8.8 km。 表明主震属于兼具逆冲分量的走滑型地震; ② 震后区域应力场主压应力轴方位为NWW, 倾角接近水平, 主张应力轴方位为NNE, 倾角接近水平, 属于走滑型应力状态, 与周边地质构造运动状态相吻合; ③ 对研究区域采用不同划分所得应力场结果相差不大, 表明该区域应力场比较稳定, 受深大断裂带和震源机制解类型影响较小。  相似文献   

8.
北京时间2020年7月23日04时07分,西藏自治区那曲市尼玛县发生MS6.6地震,震源深度10 km,震中位置为(33.19°N,86.81°E)。主震发生当日18时50分,发生一次MS4.8强余震,震源深度为10 km。本文基于西藏、青海、新疆区域波形资料,采用ISOLA近震全波形方法对这两次地震进行震源机制反演。结果显示,尼玛MS6.6主震的最佳断层面解为:节面Ⅰ走向8°/倾角46°/滑动角?93°,节面Ⅱ走向191°/倾角44°/滑动角?87°;矩震级MW6.4,最佳矩心深度7 km。震源区应力主轴的空间取向为:主压力轴P的方位角220°、倾伏角88°,主张力轴T方位角99°、倾伏角1°。MS4.8强余震的最佳断层面解为:节面Ⅰ走向12°/倾角47°/滑动角?106°,节面Ⅱ走向214°/倾角45°/滑动角?74°;矩震级MW5.0,最佳矩心深度6 km。震源区应力主轴的空间取向为:主压力轴P的方位角207°、倾伏角78°,主张力轴T方位角113°、倾伏角1°。震源机制反演结果表明,这两次地震均为以正断型为主的地震事件,与震源区附近先前地震的震源机制有较好的一致性。结合周边地质构造和余震分布,我们认为尼玛MS6.6地震可能是由位于日干配错断裂和依布茶卡盆地西缘断裂之间的一条正断层活动所引发的。   相似文献   

9.
四川盆地荣县—威远—资中地区属于历史弱震区,然而2019年相继发生多次破坏性地震事件.本文基于四川区域地震台网宽频带地震仪记录波形资料,利用CAP (Cut and Paste)波形反演方法,获得了2016年以来发生在荣县—威远—资中地区的26个MS≥3.0地震的震源机制解、震源矩心深度和矩震级,对该区域发震构造几何结构与变形特征及构造应力场特征进行了初步分析.主要获得如下认识:(1)26个MS≥3.0地震的震源矩心深度在1.5~5 km之间,平均深度3.4 km,表明事件发生在上地壳浅部沉积层内;震源深度分布揭示发震断层面倾向SE、缓倾角.(2)26个地震的震源机制全部为逆冲型,表明发震构造整体为逆断层性质.节面优势方位NNE-NE,结合走向与倾角统计结果,本文推测发震构造可能为威远背斜南翼一系列倾向SE、走向NNE-NE的缓倾角盲冲断层.(3)P、T、B轴优势方位单一,表明研究区域处于相对简单的构造应力环境.区域应力场反演获得的最大主压应力轴σ1方位NW-SE,近水平,与目前已知的该区域构造应力场水平主压应力方向一致,反映区内构造活动主要受区域构造应力场控制;其明显有别于四川盆地南缘2019年6月17日长宁MS6.0地震余震区NE-SW向的最大主压应力轴方位也揭示出四川盆地构造应力场具有明显的分区特征.(4)26个地震整体的应变花表现为NW-SE向挤压白瓣形态,表明区内发震构造整体呈NW-SE向纯挤压变形模式,明显有别于2019年长宁MS6.0地震序列NE-SW向挤压兼具小量NW-SE向拉张分量的构造变形模式,进一步表明四川盆地构造变形模式也具有明显的分区特征.  相似文献   

10.
用全球地震台网的长周期地震仪记录到的远场体波,反演了2000年6月4日印度尼西亚苏门答腊南部MS8.0地震的矩张量解. 这个解比USGS、Harvard CMT和东京大学地震研究所得到的矩张量解更为合理.该地震矩张量的最佳双力偶分量为1.51021 Nm, 补偿线性矢量偶极分量为1.21020 Nm,爆炸分量为-5.91019 Nm. 震源机制主要是左旋走滑,带有很小的逆冲倾滑分量. 节面I走向为199, 倾角为82,滑动角为5;节面II走向为109, 倾角为85, 滑动角为172.P,倾角为2;T,倾角为10;B,倾角为80. 该地震的P波显示了明显的方向性效应. P波的这种多普勒效应表明,走向199的节面为断层面. 地震是从东北向西南方向单侧破裂的, 破裂传播方向几乎垂直于爪哇海沟走向.轴方位角为256轴方位角为64轴方位角为154   相似文献   

11.
由地震释放的地震矩叠加推导平均应力场   总被引:2,自引:0,他引:2       下载免费PDF全文
文中给出了根据地震释放的总地震矩求解平均应力场的方法,并使用加入随机误差的人工合成震源机制解数据和唐山余震区震源机制解数据对其进行检验。由检验结果可知,该方法可以应用于区域平均应力场的求解。使用的震源机制解资料越多,所得结果越稳定,且更接近真实的区域应力场。该方法的优点是: 用每个地震的震级作为权重,能够较好地反映出大小地震在应力场反演中的不同贡献; 并且在计算过程中不需要知道震源机制解2个节面中哪个节面为地震断层面。  相似文献   

12.
2014年4月20日安徽省霍山发生MS4.3地震,是霍山地区41年以来发生的最大地震. 本文首先基于安徽省及周边省份的地震台站资料,采用Hypo2000、 CAP和PTD方法反演得到该地震的震源深度为8 km; 然后采用Hypo2000和HypoDD方法联合对主震和余震序列进行重新定位,结果显示该地震序列呈北东向分布,绝大部分余震分布在主震的西南侧; 最后分别采用FOCMEC方法和CAP方法反演该地震的震源机制解,获得的反演结果非常接近,节面Ⅰ与节面Ⅱ的走向、 倾角、 滑动角分别为135°/70°/-30°与230°/60°/-160°. 此外该地震的椭圆等烈度线呈北东向展布,结合该地区的历史地震和地震构造,认为该地震与北东向的落儿岭—土地岭断裂活动有关. 已有震源机制解资料表明该地区构造应力场最大主压应力轴的方位角为267°,倾角为5°,最小主压应力轴的方位角为358°,倾角为4°,结合震源机制解和发震构造,认为该地震是在区域应力场作用下,落儿岭—土地岭断裂发生的一次右旋张性地震.   相似文献   

13.
The Wulong MS5.0 earthquake on 23 November 2017, located in the Wolong sap between Wenfu, Furong and Mawu faults, is the biggest instrumentally recorded earthquake in the southeastern Chongqing. It occurred unexpectedly in a weak earthquake background with no knowledge of dramatically active faults. The complete earthquake sequences offered a significant source information example for focal mechanism solution, seismotectonics and seismogenic mechanism, which is helpful for the estimation of potential seismic sources and level of the future seismic risk in the region. In this study, we firstly calculated the focal mechanism solutions of the main shock using CAP waveform inversion method and then relocated the main shock and aftershocks by the method of double-difference algorithm. Secondly, we determined the seismogenic fault responsible for the MS5.0 Wulong earthquake based on these calculated results. Finally, we explored the seismogenic mechanism of the Wulong earthquake and future potential seismic risk level of the region. The results show the parameters of the focal mechanism solution, which are:strike24°, dip 16°, and rake -108° for the nodal plane Ⅰ, and strike223°, dip 75°, and rake -85° for the nodal plane Ⅱ. The calculations are supported by the results of different agencies and other methods. Additionally, the relocated results show that the Wulong MS5.0 earthquake sequence is within a rectangular strip with 4.7km in length and 2.4km in width, which is approximately consistent with the scales by empirical relationship of Wells and Coppersmith(1994). Most of the relocated aftershocks are distributed in the southwest of the mainshock. The NW-SE cross sections show that the predominant focal depth is 5~8km. The earthquake sequences suggest the occurrence features of the fault that dips northwest with dip angle of 63° by the least square method, which is largely consistent with nodal planeⅡof the focal mechanism solution. Coincidentally, the field outcrop survey results show that the Wenfu Fault is a normal fault striking southwest and dipping 60°~73° by previous studies. According to the above data, we infer that the Wenfu Fault is the seismogenic structure responsible for Wulong MS5.0 earthquake. We also propose two preliminary genetic mechanisms of "local stress adjustment" and "fluid activation effect". The "local stress adjustment" model is that several strong earthquakes in Sichuan, such as M8.0 Wenchuan earthquake, M7.0 Luzhou earthquake and M7.0 Jiuzhaigou earthquake, have changed the stress regime of the eastern margin of the Sichuan Basin by stress transference. Within the changed stress regime, a minor local stress adjustment has the possibility of making a notable earthquake event. In contract, the "fluid activation effect" model is mainly supported by the three evidences as follows:1)the maximum principle stress axial azimuth is against the regional stress field, which reflects NWW-SEE direction thrusting type; 2)the Wujiang River crosscuts the pre-existing Wenfu normal fault and offers the fluid source; and 3)fractures along the Wenfu Fault formed by karst dissolution offer the important fluid flow channels.  相似文献   

14.
HUANG Hao  FU Hong 《地震地质》2019,41(6):1413-1428
Using the seismic waveform data of Xiaowan seismic network and Yunnan seismic network, we determined the focal mechanisms of 36 earthquakes(ML ≥ 3.0)from Jun. 2005 to Dec. 2008 and 51 earthquakes(ML ≥ 2.5)from Jan. 2009 to Dec. 2015 by generalized polarity and amplitude technique. We inverted tectonic stress field of the Xiaowan reservoir before impounding, using the focal mechanisms of 36 earthquakes(ML ≥ 3.0)from Jun. 2005 to Dec. 2008 and CAP solutions of 58 earthquakes(ML ≥ 4.0)collected and the solutions in the Global Centroid Moment Tensor(GCMT)catalog; We inverted local stress field of the reservoir-triggered earthquake clustering area, using 51 earthquakes(ML ≥ 2.5)from Jan. 2009 to Dec. 2015. Focal mechanisms statistics show that, the Weixi-Qiaohou Fault is the seismic fault. Focal mechanisms were strike-slip type in initial stage, but normal fault type in later stage. Focal depths statistics of 51 earthquakes(ML ≥ 2.5)show that, the average value of focal depths in period Ⅰ, period Ⅱ and period Ⅲ are 8.2km, 7.3km and 7.8km respectively and the standard deviations are 4.3km, 3.5km and 6.0km respectively. The average value of focal depths is basically stable in different period, only the standard deviation is slightly different. Therefore, there is not positive connection between focal depth and deviation of focal mechanisms. What's more, there are 2 earthquakes(number 46 and number 47 in Fig.5 and Table 3)with almost the same magnitude, epicenter and focal depth, but they have different faulting types as normal and strike-slip. The focal mechanism of event No.46 is strike:302°, dip:40° and rake:-97° for plane Ⅰ, however, the focal mechanism of event No.47 is strike:292°, dip:82° and rake:140° for plane Ⅰ. Likewise, earthquake of number 3 and number 18 have similar characteristic. Therefore, the obvious focal mechanism difference of similar earthquake pair indicates the complexity of Weixi-Qiaohou Fault. Considering the quiet-active character of reservoir-triggered earthquakes, we discussed the change of local stress field in different period. The σ1 of tectonic stress field was in the near-south direction, with a dip angle of 14° before the impoundment, however, the direction of σ1 of local stress field changed continuously, with the dip angle getting larger after the impoundment. The direction of σ1 of local stress field of reservoir-triggered earthquake clustering area is close to the strike of Weixi-Qiaohou Fault, and reservoir impoundment increased the shear stress in the fault, so the weakening of fault was beneficial to trigger earthquakes. Comprehensive analysis suggests that fluid permeation and pore pressure diffusion caused by the water impounding, and the weakening of fault caused by local stress field are the key factors to trigger earthquake in the Xiaowan reservoir.  相似文献   

15.
The Oct.1,2014 M5.0 Yuexi earthquake occurred on the Daliang Shan fault zone where only several historical moderate earthquakes were recorded.Based on the waveform data from Sichuan regional seismic network,we calculated the focal mechanism solution and centroid depth of the M5.0 Yuexi earthquake by CAP (Cut and Paste) waveform inversion method,and preliminarily analyzed the seismogenic structure.We also calculated the apparent stress values of the M5.0 earthquake and other 14 ML≥4.0 events along the Shimian-Qiaojia fault segment of the eastern boundary of the Sichuan-Yunnan block.The result indicates that the parameters of the focal mechanism solution are with a strike of 256°,dip of 62°,and slip of 167° for the nodal plane Ⅰ,and strike of 352°,dip of 79°,and slip of 29° for the nodal plane Ⅱ.The azimuth of the P axis is 121° with dip angle of 11°,the azimuth of T axis is 217° with dip angle of 28°,and the centroid depth is about 11km,and moment magnitude is MW5.1.According to the focal mechanism solution and the fault geometry near the epicenter,we infer that the seismogenic fault is a branch fault,i.e.,the Puxiong Fault,along the central segment of the Daliang Shan fault zone.Thus,the nodal plane Ⅱ was interpreted as the coseismic rupture plane.The M5.0 Yuexi earthquake is a strike-slip faulting event with an oblique component.The above findings reveal the M5.0 Yuexi earthquake resulted from the left-lateral strike-slip faulting of the NNW Dalang Shan fault zone under the nearly horizontal principal compressive stress regime in an NWW-SEE direction.The apparent stress value of the Yuexi earthquake is 0.99MPa,higher than those of the ML ≥ 4.0 earthquakes along the eastern boundary of the Sichuan-Yunnan block since 2008 Wenchuan M8.0 earthquake,implying a relatively high stress level on the seismogenic area and greater potential for the moderate and strong earthquake occurrence.It may also reflect the current increasing stress level of the entire area along the eastern boundary,and therefore,posing the risk of strong earthquakes there.  相似文献   

16.
GUO Zhi  CHEN Li-chun  LI Tong  GAO Xing 《地震地质》2018,40(6):1294-1304
The W-phase is a long period phase arriving between the P and S wave phases of a seismic source, theoretically representing the total near-and far-field long-period wave-field. Recent study suggests that the reliable source properties of earthquake with magnitude greater than ~MW4.5 can be rapidly inverted by using the W-phase waveform data. With the advantage of W-phase, most of major earthquake research institutes in the world have adopted the W-phase based inversion method to routinely assess focal mechanism of earthquake, such as the USGS and GFZ. In this study, the focal mechanism of the August 8, 2017 M7.0 Sichuan Jiuzhaigou and August 9, 2017 M6.6 Xinjiang Jinghe earthquakes were investigated by W-phase moment tensor inversion technique using global seismic event waveform recordings provided by Incorporated Research Institutions for Seismology, Data Management Center. To get reliable focal mechanism, we strictly select raw waveform data and carry out inversion in stages. At first, we discard waveform without correct instrument information. Then we carry out an initial inversion using selected waveform data to get primary results. Using the preliminary results as input, we carry out grid-search based inversion to find the final optimal source parameters. The inverted results indicate that the August 8, M7.0 Sichuan Jiuzhaigou shock resulted from rupturing on a NW-trending normal fault with majority of strike-slip movement. The parameters of two nodal planes are strike 152.7°, dip 61.4°, rake -4.8° and strike 245.0°, dip 85.8°, rake -151.3° respectively, and focal depth is 14.0km. The August 9, Xinjiang Jinghe M6.6 shock resulted from rupturing on a south-dipping thrust fault with left-lateral strike-slip. The parameters of two nodal planes are strike 100.6°, dip 27.5°, rake 114.1° and strike 259.3°, dip 65.1°, rake 78.0°, and the focal depth is 16.0km. The direction of two nodal planes is consistent with regional seismotectonic background.  相似文献   

17.
Based on analysis of background of geological tectonic movement and strong earthquake activity, we first obtained the focal mechanism solutions using amplitude ratio and CAP method, then determined the characteristic of average stress field of the study area by inversion of the stress field. On this basis, we selected the source mechanism consistency parameter as the inspection index to obtain the latest changes of stress field in Hetao seismic zone based on its temporal and spatial analysis. Two methods were used in the stress field inversion for comparison and analysis, which are average stress axis tensor and LSIB(Linear stress inversion bootstrap, LSIB). According to the geological tectonic movement and focal mechanism solutions of MS≥4.0 earthquakes from 1970, we judge that the stress field evolution process of Hetao seismic belt is controlled jointly by vertical difference movement and horizontal shear movement, resulting in that the normal fault and strike-slip fault mechanisms are dominating.Taking into account the station layout of the study area, and in order to ensure the accuracy of calculation, we calculated 224 earthquakes focal mechanism solutions by using amplitude ratio and CAP method, including 164 earthquakes with 2.8≤ML<3.5, 42 earthquakes with 3.5≤ML<4.0, and 18 earthquakes with ML≥4.0; The statistical results on type of focal mechanisms show that, there are 142 strike-slip earthquakes(63.4%), 50 normal fault earthquakes(22.3%)and 32 thrust fault earthquakes(14.3%). In this study period(from 2001 to 2012), most earthquakes had a strike-slip mechanism in Hetao seismic belt, this is one of the inherent characteristics of the stress field.The result of average stress axis tensor and LSIB shows that, the azimuth of maximum compressional stress is 47°~52°, direction is NE-SW; The azimuth of minimum compressional stress is 313°~322°, direction is NW-SE; This indicates that, the stress field characteristics of Hetao seismic belt and its sub-block are not completely consistent. Linhe Basin exhibits coordinated stress field characteristics with Hetao seismic belt, but Hubao Basin exhibits regional differences, direction of compressive stress has clockwise deflection in Baotou area, and the compressive stress direction is NEE. This heteropical character of stress field is also confirmed by horizontal projection distribution of stress axis of historical strong earthquakes and recent moderate and small earthquakes. Since 2003, the temporal sequence curve of consistency parameter of Hetao seismic belt had a downward trend, this change was caused by focal mechanism consistency parameter of Linhe to Wuhai area, which indicates that this structural position is possible to be a priority area for stress accumulation and accelerated release in future.  相似文献   

18.
On 16th September 2013, an M5.1 earthquake occurred in Badong County, Hubei Province, which is the biggest one since the first water impounding in 2003 in the head region of the Three Gorges Reservoir area. The crustal velocity information is needed to determine the earthquake location and focal mechanism. By comparison, the 1-D velocity structure model from Zhao was adopted in this study. Double difference location method was applied to determine the precise locations of the M5.1 earthquake sequence. Relocation results show that the dominant distribution of this sequence is along NEE direction. In order to understand its seismogenic structure, focal depth profiles were made. Profile AA' was along the sequence distribution, and the earthquake sequence extended about 12km. Focal depth of mainshock is deeper than that of aftershocks, and earthquake rupture propagated laterally southwestward. The seismic profile BB' and CC' were perpendicular to profile AA', which represent the dip direction. Both profiles show that the focal depth becomes deeper toward southeast, and dip angle is about 50°. It means that the possible seismogenic fault strikes NEE and dips southeast. Focal mechanism could provide more information for judging the seismogenic structures. Many methods could obtain the focal mechanism, such as P-wave first motion method, CAP method, and some other moment tensor methods. In this paper, moment tensor inversion program made by Yagi Y is adopted. 12 regional seismic stations ranging from 100~400km are picked up, and before the inversion, we removed the mean and trend. The seismic waveforms were band pass filtered between 0.05 and 0.2Hz, and then integrated into displacement. Green's functions were calculated using the discrete wavenumber method developed by Kohketsu. The focal mechanism of the M5.1 mainshock manifests that the NEE-striking fault plane probably is the possible seismogenic fault, which is consistent with the analysis of focal depth profiles. The focal mechanisms of the ML≥2.0 aftershocks are retrieved by P-wave first motion method, and the nodal plane I is in accordance with the earthquake sequence distribution and the fault plane of the mainshock. FMSI program was adopted to inverse the stress field in the earthquake area, and the results show that the earthquake sequence is under the control of the regional stress field. The earthquake sequence occurred on the stage of slow water unloading, and ETAS model was introduced to testify the influences of water level fluctuations on earthquakes. The results denote that the reservoir played a triggering role in the earthquake, however, the NEE-striking seismogenic fault is the controlling factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号