首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用青藏块体东北缘地区1999~2001年GPS观测获得的地壳水平运动速率场,通过对该地区进行块体划分,将该地区划分为9个块体,应用块体的整体旋转线性应变模型(RELSM)估计了各个块体的旋转与应变参数,以及计算了该地区内143个GPS站点的应变参数,以此分析了该地区的应变场的基本特征,结果表明:①阿拉善块体s较稳定,其旋转角为0.630×10-8,运动速率为0.688 mm/a,②相比其他块体,共和块体旋转角最大达到了6.589×10-8 ,运动速率达到了7.296 mm/a,③应变高值区主要集中在祁连山断裂,海原断裂等,在这些地区最大剪应变率达到了7.5×10-8、面膨胀率达到了-2.5×10-8、主压应变达到了-6×10-8.  相似文献   

2.
鄂尔多斯块体受青藏块体和华北块体的挤压,在其周缘形成一系列褶皱和压性断层,构造较为复杂。本文利用1980、1990和2014这3期精密水准资料计算了鄂尔多斯块体西北缘的垂直运动速率,分析结果表明:① 位于阴山断块隆起与鄂尔多斯断块隆起之间的河套盆地相对下沉,其中临河盆地最为明显,下沉速率为2-4mm/a,位于鄂尔多斯块体西缘的吉兰泰-银川断陷带沉降速率有所减缓,目前沉降速率约为2mm/a;② 整个测区表现为明显的山区上升、盆地下沉的继承性运动;③ 穿过乌拉山北缘断裂和磴口-本井断裂的2条水准剖面显示断裂两侧的垂直运动速率差异小于0.5mm/a。  相似文献   

3.
利用银川盆地及周边地区1999—2007年的GPS数据,研究了该区域现今地壳水平速度场特征,根据区域地壳主应变率、面膨胀率及最大剪应变率的空间变化以及小震分布特征,结合该地区的地质构造背景,对黄河断裂的南北段差异特征及盆地构造动力和地震危险性分析研究,结果表明:研究区内GPS测站主要运移方向为E-SE向。贺兰山东麓断裂和黄河断裂北段以拉张兼走滑运动为主,而黄河断裂南段以走滑运动为主,盆地整体处于剪切拉分断陷环境;银川盆地比周围块体的主应变率大,最大主应变方向为NW向,以张应变为主,结合面膨胀率和最大剪应变率也都显示盆地内存在较强的拉张和剪切变形,盆地内地震主要分布在南部地区;主应变率、面膨胀率、最大剪应变率和小震活动性均说明黄河断裂南段比北段活动性强;银川盆地地壳变形程度高,而周边稳定块体变形弱,黄河断裂和贺兰山东麓断裂分别位于应变强弱变化的东、西边界上,断裂具有较强的应变积累,表现出较高程度的地震危险性。  相似文献   

4.
自50~55 Ma以来,印度次大陆向北与欧亚大陆碰撞后形成喜马拉雅—青藏高原造山带,碰撞导致地壳增厚致使高原大幅隆升,改变了亚洲大陆岩石圈的构造格局,也对东亚地区的气候和环境产生了巨大影响。阿尔金断裂作为青藏高原北缘的主控边界断裂,其运动学性质在20世纪70年代备受关注,不同量级的滑动速率引出了块体运动与东向逃逸和连续变形与地壳增厚两种端元模型。约10~15 Ma以来,在青藏高原南部与北部出现地堑与裂谷,为高原东西向拉张运动提供了证据,表明青藏高原开始经历地壳减薄过程。青藏高原形成以来形变场经历怎样变化,长时间尺度的地质学构造过程与现今GPS观测是否能够统一?10~15 Ma以来青藏高原地壳减薄过程造成高原高程怎样的变化?青藏高原北缘,尤其是跨阿尔金断裂具有怎样的现今三维地壳变形场,地壳应变是如何在北阿尔金断裂、祁漫塔格断裂和阿尔金断裂之间分配的?青藏高原北缘与塔里木盆地具有怎样的力学性质,对跨阿尔金断裂构造形变场造成怎样的影响?最后,GPS观测得到的现今地表形变场能够对青藏高原形变模式的争论作出何种解答?上述科学问题的解答,对于研究青藏高原隆升与变形过程具有十分重要的意义。本研究分为两部分。第一部分是青藏高原北缘三维震间运动场的观测与研究。在青藏高原北缘跨阿尔金断裂中段自建9个GPS连续台站并开展观测,根据区域研究特点设计无人值守的观测台站,具有低成本投入、高质量观测的特点。上述连续GPS台站的建立填补了青藏高原北缘,尤其是在阿尔金无人区地壳形变观测研究的空白,积累了宝贵的连续GPS数据;截止2015年7月,共有4年的连续GPS观测。数据分析结果证明,设计建站方法行之有效,GPS台站稳定、观测数据质量稳定、数据连续性稳定。结合使用中国大陆构造环境监测网络在研究区及邻域GPS连续台站数据作位置时间序列与速度场解算,获得青藏高原北缘地区跨阿尔金断裂中段现今三维形变场。使用三维线弹性后向滑移(backslip)块体运动模型,反演塔里木块体、北阿尔金块体、柴达木块体和祁漫塔格块体的三维块体运动。结果表明,北阿尔金山相对于塔里木盆地有(1.32±0.2)mm/a的抬升速率,相对于柴达木盆地具有(0.73±0.3)mm/a的抬升速率,可解释为北阿尔金块体存在显著的造山过程;阿尔金断裂有(8.21±0.60)mm/a的左旋走滑速率、(0.66±0.60)mm/a的缩短速率;祁漫塔格断裂有(0.53±0.60)mm/a的左旋走滑速率、(1.53±0.60)mm/a的缩短速率;北阿尔金断裂有(0.87±0.60)mm/a的左旋速率、(0.69±0.60)mm/a的缩短速率。同时,阿尔金断裂中、西两段滑动速率基本一致,约为8.0~10.0mm/a。定量研究结果支持连续形变与地壳增厚模型,表明相对塔里木块体,青藏高原北缘地区正在抬升、增厚,以北阿尔金山地区最为明显,抬升速率约达1.3mm/a。跨青藏高原北缘的阿尔金断裂、北阿尔金断裂和祁漫塔格断裂近200km的宽泛变形带内,南北向地壳缩短并不明显,缩短量仅约为2.9mm,且近一半缩短量发生在祁漫塔格山南侧。GPS观测阿尔金断裂车尔臣河段(~86°E)剖面表明,断裂两侧存在非对称变形特征。本文采用非对称变形模型反演GPS速度剖面数据,获得断裂两侧塔里木盆地和青藏高原北部的地壳介质剪切模量差异。结果显示,塔里木盆地地壳介质剪切模量约为青藏高原北部剪切模量1.53倍,相应S波波速比值为1.24,与Yang等人得到的地壳和上地幔三维VSV模型结果一致。地震学研究结果认为,青藏高原北部与东部地区在中地壳存在低速层,局部区域可能发生部分熔融;Hacker等进一步确认羌塘地块中地壳到深部地壳存在熔融现象。本文的研究运用了与地震学完全不同的资料,通过大地测量方法推导青藏高原北部与塔里木盆地的地壳介质力学性质差异,得到与地震学研究得到的S波波速比及其构造物理学解释相当一致的结果。成果为青藏高原力学演化模型提供新的约束。本论文第二部分内容是使用覆盖青藏高原及周边的GPS速度场,计算青藏高原内部应变率场。GPS观测速度场不仅显示了南东东-北西西向的地壳拉张过程,也揭示了青藏高原内部更加重要的地壳减薄过程。结果显示,青藏高原北部和南部的垂向应变率(减薄应变率)分别为(8.9±0.8)nanostrain/a和(7.4±1.2)nanostrain/a,青藏高原西南部的垂向应变率为(12.0±3.2)nanostrain/a,表明青藏高原内部大尺度范围应变率测量结果的一致性。并且青藏高原内部的拉张应变率观测也相当一致,青藏高原北部,沿着N114±1°E主应变方向的拉张应变率为(21.9±0.4)nanostrain/a;高原南部沿着N93±1°E主应变方向的拉张应变率为(16.9±0.2)nanostrain/a;高原西南部沿着N74±3°E主应变方向的拉张应变率为(22.2±1.8)nanostrain/a。如果地壳减薄开始于10~15 Ma,并且现今观测得到应变率适用于整个时间跨度,那么地壳累积减薄5.5~8.5km。应用Airy地壳均衡理论,青藏高原的平均高程将下降~1km。青藏高原北部、南部和西南部相似的垂向应变速率也表明,在3个区域的地壳拉张、正断裂运动和地壳减薄过程由相同的物理机制所支配。综合上述两部分研究成果,发现青藏高原现今垂向运动在高原内部和边缘地区存在很大差别。高原内部地区正在经历地壳减薄,而高原边缘地区正在经历不同程度的增厚与隆升。青藏高原北缘地区的垂向应变率约5~20nanostrain/a,如果考虑重力均衡作用,对应的垂向隆升速率在0.04~0.14mm/a左右。但是,对于局部地区如北阿尔金块体,其底部受到塔里木盆地南缘下插挠曲板块的支持,在没有重力均衡情况下,垂向隆升速率可能达到1mm/a。喜马拉雅地区呈现不同水平的垂向形变,垂向应变强烈(约10~80nanostrain/a),山脉底部受到印度下插板片的支持,无法通过重力均衡假定由垂向应变率估计隆升速率。但由GPS与水准数据约束的俯冲板片模型推测山脉隆升速率达到约7mm/a。而对于祁连山地区,GPS应变率推测得到垂向应变率约20~40nanostrain/a,应用地壳均衡理论,平均隆升速率为0.15~0.3mm/a;而由于逆冲推覆构造与褶皱变形带的存在,中下地壳有可能仍存在弹性变形,不能实现完全重力均衡,实际隆升速率有可能高于这一估计。本文研究给出青藏高原不同地区三维形变场与形变速率的定量估计,是对连续形变与地壳增厚形变模型的重要修正。结果并不支持块体运动与东向逃逸模型,并认为高原南北双向俯冲模型中的塔里木块体南向俯冲几乎不存在。  相似文献   

5.
基于临汾盆地及其周缘的GPS和In SAR观测资料,通过计算最大主应变、最小主应变、面应变等水平形变特征量以及罗云山断裂(南段)上盘雷达视线向形变速率,综合研究汶川M 8.0地震前后临汾盆地及边界断裂现今地壳形变特征。结果显示:汶川M 8.0地震的发生引起临汾盆地及周缘形变场的动态调整,罗云山断裂南段至峨嵋台地北缘断裂应变率场由弱张性活动转为较强的压性活动状态,最大面应变率由1.5×10-8/a变为-3.1×10-8/a,SBAS-In SAR结果同时显示,罗云山断裂(南段)上盘于2009年起由下降转为隆起,在形变场动态调整过程中发生河津M 4.8地震,之后该区域应变率场恢复背景状态;汶川M 8.0地震有利于在山西断陷带南段北东东向断裂间形成压性应变积累,对河津地M 4.8地震的发生可能具有促进作用。  相似文献   

6.
李承涛  苏小宁  孟国杰 《地震》2018,38(2):37-50
巴颜喀拉块体东北缘是构造变形和地震活动较强的区域, 2017年九寨沟MS7.0地震就发生在该区域内。 利用多尺度球面小波方法解算GPS应变率场, 分析巴颜喀拉块体东北缘2009年至2017年的应变率场分布特征, 该方法的优点是可以将GPS应变率场按照不同的空间尺度进行小波分解, 给出不同空间尺度的应变率场。 结果表明在2017年九寨沟地震之前, 震中附近应变积累显著, 虎牙断裂北延断裂的左旋走滑速率为3.0 mm/a, 拉张速率为3.1 mm/a, 表明该条断裂以左旋走滑为主兼有拉张特征, 与九寨沟地震的震源机制解一致。 除九寨沟震中附近外, 在岷县与漳县交界处、 理县和汶川、 青川等地区主应变率、 面应变率、 最大剪应变率也较大, 这可能与2013岷县漳县(MS6.6)、 2008年汶川(MS8.0)、 2014年理县(MS4.8)以及2014青川县(MS4.8)地震有关。  相似文献   

7.
横跨龙门山断裂带南段的连续GPS测网记录到了2013年4月20日芦山MS7.0地震孕育过程相关的地壳变形信息,为研究此次地震前孕震区地壳变形动态演化过程提供重要的基础资料.研究表明,汶川地震的发生导致茂县-汶川断裂南段及以东地区挤压应变和左旋剪切应变加载.GPS跨单条断裂的基线平均缩短速率约为1~2 mm/a,跨越整个断裂带的基线平均缩短速率约为8~10 mm/a,且均表现出随芦山地震临近年均缩短速率逐渐减小的特征;多站组合的应变参数时序结果显示,龙门山断裂带南段主压应变率自西向东逐渐减小,主压应变方向为N30°~45°W近似垂直于断裂带;北川-映秀断裂以东地区以挤压变形为主兼有明显的左旋剪切变形,且面应变和第一剪应变随着芦山地震的临近应变率逐渐减小;北川-映秀断裂以西则表现为在时间进程上逐渐增强的右旋剪切变形.区域GPS变形场结果显示汶川震后龙门山断裂带南段挤压应变积累速率显著大于震前,且茂县-汶川断裂以东地区表现出左旋剪切应变积累特征.综合分析认为,汶川地震后巴颜喀拉块体东向运动加速,运动速度自西向东递减,致使在汶川地震中未破裂的龙门山断裂带南段的挤压应变积累水平进一步增强.  相似文献   

8.
鄂尔多斯地块的运动学特征和动力学机制深受地学界关注。文中基于GPS数据和SKS剪切波分裂结果等地球物理资料,分析了鄂尔多斯地块及其周缘现今的壳幔运动学特征。结果表明,鄂尔多斯地块相对于欧亚大陆呈现逆时针旋转,欧拉极位于俄罗斯东南部,欧拉矢量为(50. 942±1. 935)°N,(115. 692±0. 303)°E,(0. 195±0. 006)°/Ma;块体内部变形微弱,GPS速率差异2mm/a,应变率5nano/a,应变时间序列的变化范围为-10~10nano,均在GPS的误差范围之内,表明在现有GPS资料的有效分辨范围内,鄂尔多斯块体内部相对完整,不存在明显的差异运动。块体西缘和东缘活动强烈,形成了2条明显的右旋剪切带,旋转速率为0. 2°~0. 4°/Ma;块体南缘和北缘活动较弱,边界断裂有左旋运动性质,旋转速率约0. 1°/Ma。青藏高原东北缘和鄂尔多斯块体西缘的壳-幔变形完全一致,满足垂直贯通模型,变形由青藏高原东北缘强烈的推挤作用引起;块体南部到秦岭造山带的地震各向异性与绝对板块运动方向一致,表明该区域存在地幔流通道,且已深入到鄂尔多斯块体内部;山西断陷带到太行山的SKS剪切波分裂的快波偏振方向与软流圈地幔流动方向一致,表明该区域受控于太平洋板块的俯冲作用;鄂尔多斯块体内部微弱的SKS各向异性来自于克拉通内部"化石"的各向异性。综合上述资料分析,鄂尔多斯地块相对于其周缘的旋转运动可能主要来自于其周缘构造带在岩石圈和软流圈作用下的主动运动,块体的主动旋转可能比较微弱。  相似文献   

9.
汶川Ms8.0地震孕育发生的机制与动力学问题   总被引:13,自引:3,他引:10       下载免费PDF全文
2008年5月12日四川省汶川县发生了Ms8.0强烈地震.发震断层是龙门山断裂带的映秀-北川断裂.分析震前的GPS速度场发现,从巴颜喀拉块体西部到龙门山断裂带沿大约N103°E方向的缩短速率为13.0 mm/a,龙门山断裂带的右旋走滑速率1.1 mm/a,断裂带处于闭锁状态.四川盆地沿大约N103°E方向有少量的压缩变形,而沿SW方向有少量的拉张变形.同震位移场显示,这次地震可能是巴颜喀拉块体SE向逆冲与四川盆地NW向俯冲同时发生的.应变场分析发现,震前震中区的主压与主张应变率分别为-30.840×10-9/a与13.956×10-9/a,主压应变轴N105.4°E与震源机制解得到的主压应力轴的方向N103°E一致.由本文提出的应力-应变机制得到的断层滑动方向和走向与地表破裂调查和震源机制解得到的结果一致.印度、太平洋和菲律宾海板块与欧洲板块的相互作用足龙门山断裂带积累弹性应变能和孕育汶川地震的长期作用力.苏门达腊大地震使青藏高原和华南块体的相互作用加强,促进了汶川地震的发生.  相似文献   

10.
青藏块体东北缘近期水平运动与变形   总被引:61,自引:2,他引:61       下载免费PDF全文
利用青藏块体东北缘地区13、1年GPS观测资料,给出了本区地壳水平运动速度场及视应变场分布图,提出了由位移观测值直接求解块体旋转和变形参数的方法,初步研究了本区构造块体运动与变形特征.结果表明:①本区存在整体性向东-东南方的运动(速率约mm/a);②南部的甘肃-青海块体的运动较快,而北部的阿拉善块体的运动较慢,二者运动速率相差近6mm/a,祁连-海原断裂带左旋走滑运动显著.③自西向东存在北北东-北东东向压性运动;④阿拉善块体、甘肃-青海块体内部存在北西西向张性变形,阿拉善块体的整体张性变形更显著,鄂尔多斯块体西侧的块体交接地带为压性运动.  相似文献   

11.
本文首先沿走向将鲜水河断裂带划分为炉霍、道孚、乾宁、康定和磨西五个断裂段,利用沿断裂带布设的跨断层短基线、短水准场地测量资料计算了近场的断层活动参数,利用覆盖断裂带相对较大区域的重力、GPS观测资料计算了重力场动态变化、GPS速度场.基于重力场动态变化和GPS速度场采用蚁群算法和粒子群算法(具有全局优化的优势)分别反演计算了五个断裂段断层活动参数,将结果中的走滑分量作为五个断裂段的现今走滑速率.通过对以上三类现今走滑速率及五个断裂段的地质平均滑动速率进行融合与对比分析,将重力资料反演计算结果作为断裂带整体走滑速率,与跨断层短基线、短水准测量计算的断层滑动速率结果进行对比分析,初步判定了各跨断层短基线、短水准场地所跨断裂的性质,最终给出了五个断裂段的现今整体左旋走滑速率和部分分支断裂左旋走滑速率,结果为:(1)炉霍段为9.13mm·a~(-1),虾拉沱区域西支断裂为2.46mm·a~(-1),东支断裂为5.84mm·a~(-1).(2)道孚段为8.57mm·a~(-1),东南段沟普区域西支断裂为1.78mm·a~(-1),东支断裂为6.79mm·a~(-1).(3)乾宁段为7.67mm·a~(-1).(4)康定段为6.14mm·a~(-1).(5)磨西段为4.41mm·a~(-1).本文还定性讨论了断裂带两侧重力、GPS测点覆盖范围内活动地块的三维弹塑性变形和古地震、历史地震造成的永久位错.  相似文献   

12.
本文搜集、整理1998—2013年境内外天山及周边地区(包括中国新疆、哈萨克斯坦、吉尔吉斯斯坦等)500余个GPS观测点数据,采用GAMIT/GLOBK软件对其进行解算和平差计算,并利用了弹性块体模型计算区域块体边界断层闭锁深度、块体运动参数和主要活动断层的滑动速率.研究结果表明,东、西昆仑地震带闭锁深度最大(19km),其次为南天山地区,闭锁深度达到17km,闭锁深度最小的为哈萨克斯坦(13km);各块体相对欧亚板块作顺(逆)时针旋转,旋转速率最大(-0.7208±0.0034°/Ma)为塔里木块体,其围绕欧拉极(38.295±0.019°N,95.078±0.077°E)顺时针方向转动,旋转速率最小为天山东段(0.108±0.1210°/Ma),而天山东、西两段无论是在旋转速率上还是在旋转方向上都有显著的区别.西昆仑断裂带的滑动速率(10.2±2.8mm·a-1)最大,南天山西段滑动速率为9.5±1.8mm·a-1,其东段为3.9±1.1mm·a-1;而北天山东段滑动速率(4.7±1.1mm·a-1)高于北天山西段(3.7±0.9mm·a-1);塔里木盆地南缘的阿尔金断裂带平均滑动速率为7.6±1.4mm·a-1,其结果与阿勒泰断裂带滑动速率(7.6±1.6mm·a-1)基本相当;天山断裂带运动方式主要以挤压为主,而阿尔金、昆仑、阿尔泰以及哈萨克斯坦断裂带均是以走滑运动方式为主,除阿勒泰断裂带走滑方式为右旋以外,其余几个断裂带均为左旋运动.最后,利用主要断裂带的滑动速率计算出各地震带的地震矩变化率以及1900年以来地震矩累计变化量,其结果与利用地震目录计算所得到的地震矩进行比较,判定出各地震带上地震矩均衡分布状态,研究结果显示阿尔金、西昆仑、东昆仑和北天山东段断裂带存在较大的地震矩亏损,均具有发生7级以上地震的可能性,南天山东段和哈萨克斯坦断裂带地震矩亏损相对较小,具有孕育6~7级地震的潜能,而天山西段、阿勒泰地震矩呈现出盈余状态,不具在1~3年内有发生强震的可能.  相似文献   

13.
位于华北板块和扬子板块之间的陕西中南部由渭河盆地、秦岭造山带和汉中盆地构成,其新构造运动主要形式为山脉隆升、盆地断陷,因此以重复水准测量为手段的地壳垂直运动研究尤为重要.基于研究区1970年以来的多期精密水准测量数据,用GPS垂直运动速率约束的动态平差方法获得了区域垂直运动速度场.以此为基础,用倾滑位错模型、网格搜索方法反演了研究区主要断层倾滑速率和闭锁深度,结果显示:秦岭北缘断裂倾滑速率为2.25~4.53 mm·a~(-1),闭锁深度为7.7~10.0 km;华山山前断裂倾滑速率为2.35~2.71 mm·a~(-1);闭锁深度为2.8~5.0 km,反映了该断裂在华县大地震之后,可能还没有完全闭锁,发生大震的应变能积累条件不足;渭河盆地北缘断裂的倾滑动速率为2.0~2.5 mm·a~(-1),闭锁深度仅为3.0 km左右,说明该断裂以蠕滑运动为主;略阳断裂倾滑速率为3.02 mm·a~(-1),闭锁深度6.7 km,是陕南较活动的断裂.  相似文献   

14.
安宁河—则木河断裂带及东侧的大凉山断裂带作为大凉山次级块体西侧与东侧边界,具有发生大地震的活动构造背景.本文意在用有限的形变数据和地震数据两种资料评估大凉山次级块体边界断裂带的孕震深度及其地震危险性.采用弹性半空间模型对安宁河断裂、则木河断裂和大凉山断裂带滑动速率和闭锁深度进行了详细分析;计算了90%、95%和99%不同分位数的小震深度下界值并与GPS得到的闭锁深度进行对比,分析二者异同点.结果显示,安宁河断裂北段闭锁深度为6.2 km,不到90%分位小震震源深度16 km的一半,表明该段在1952年MS63/4地震后,断层逐渐趋于闭锁;而在6~16 km深度主要以小地震和无震滑动两种形式释放能量,存在深部蠕滑运动.大凉山断裂北段在0~10 km范围内完全闭锁,而10~25 km闭锁程度较弱.安宁河断裂南段、则木河断裂、大凉山断裂中段和南段均处于完全闭锁阶段,闭锁深度接近90%分位数小震深度的下界值,标准差约为0.94 km.此外,A、B、C三个剖面的反演结果表明大凉山次级块体的运动自北向南具有顺时针旋转特性,与川滇块体顺时针运动特征吻合.大凉山次级块体北、中、南三段边界断裂及块体内部总的滑动速率分别为9.8 mm·a-1、8.9 mm·a-1和8.4 mm·a-1,呈自北向南递减趋势.大凉山断裂南段布拖断裂和交际河断裂积累的能量分别能够发生一次矩震级为MW7.5的地震,离逝时间已经接近地震平均复发间隔,未来100年大地震的发震概率分别为7.1%和5.9%,应对其地震危险性给予重视.  相似文献   

15.
鄂拉山断裂是位于青藏高原东北缘的一条右旋走滑断裂,前人通过野外地质考察厘定了其万年尺度的长期滑动速率,但对其现今运动学特征的认识仍不足.本文利用近二十年获取的GPS速度场,以贝叶斯理论作为断层滑动反演的理论框架,采用MCMC(马尔科夫链蒙特卡罗)方法,构建鄂拉山断裂的运动学模型,探讨该断裂的现今震间滑动速率和闭锁状态.研究结果表明,鄂拉山断裂的闭锁深度约为15 km,深部的滑动速率为5.0±1.5 mm·a^-1,反映了断层两侧地壳的整体相对运动速率.尽管当前研究区的GPS观测台站分布相对稀疏,但仍可以探测出断层闭锁状态沿走向的变化.在断层中段,由于几何形态的变化,形成了强闭锁的凹凸体,闭锁系数达到0.6~0.7;断层的南段和北段有明显的蠕滑特征,计算得到的闭锁系数仅为0.2~0.3.进一步计算凹凸体上由于滑动亏损产生的等效地震矩积累率为2.35×10^17 N·m/a,等同于M W5.6地震的能量水平.最后,针对研究区域GPS台站分布稀疏的局限,本研究基于滑动模型的误差最小化准则,给出有限资源条件下的GPS台站优化增设方案.  相似文献   

16.
为了解东昆仑断裂活动对2017年8月8日九寨沟M_S7.0地震的影响,本文选取1999—2007年、2013—2017年GPS速度场作为约束,基于块体-位错模型反演计算东昆仑断裂两个时间段的块体运动速率、断裂滑动速率和滑动亏损率,并进一步研究青藏高原东缘最大剪应变率场和九寨沟震区的震间库仑应力累积速率.结果显示,东昆仑断裂中西段左旋走滑速率较高,东段走滑速率较低,自西向东逐步递减,存在明显的梯度.在两个时间段,阿坝块体刚性运动的方向顺时针偏转0.2°,运动速率由12.22mm·a-1增大到15.96mm·a-1;东昆仑断裂左旋走滑速率升高,其中西段较为明显(升高约1.2±0.3mm·a-1);东昆仑断裂东段闭锁深度和闭锁程度增加;2013—2017年,东昆仑断裂滑动引起的九寨沟震区库仑应力累积速率是1999—2007年的3倍,最大剪应变率也明显升高.因此本文认为:2008年汶川地震和2013年芦山地震后,龙门山断裂部分解锁,阿坝地块活动性增强,东昆仑断裂滑动速率增大,导致九寨沟震区库仑应力加载速率增加,加速了九寨沟地震的孕育过程.  相似文献   

17.
本文结合CR-InSAR、PS-InSAR技术,将CR、PS点联合构网,采用LAMBDA方法进行相位解缠,研究西秦岭北缘断裂带中断的微小形变,结果得出断裂带表现出左旋走滑运动特征,断裂带南盘平均形变速率为2.3mm·a~(-1),北盘平均形变速率为-1.5mm·a~(-1),南北两盘平均形变速率差异为3.8mm·a~(-1),与其他学者GPS、地质测年研究成果相近.对研究区内的角反射器(CR点)安装、影像特征分析及形变解算进行了较为详细的论述,并对比分析了CR、PS点联合构网和PS点单独构网解算结果,得出对地质环境复杂的断裂带做永久散射体形变研究时,CR、PS点联合构网解算结果好、研究结果可靠.说明CR、PS点联合构网中,CR点由于其自身的高稳定特性,对整个解算网络起到了很好的整体控制作用,保证了解算结果正确.  相似文献   

18.
地壳垂向形变在连续空间和时间域内呈现显著特征,探求其时空变化特征有助于理解地球物理过程,为研究地球内部相互作用机制提供支持.本文使用美国西部地区PBO与中国大陆CMONOC两个GNSS网测站的坐标时间序列,通过基于中位数并顾及年际差异的非参数方法(MIDAS方法)估计测站的速度与不确定性;建立空间结构函数(SSF)并确定区域内各测站间的相对关系;以此为基础,构建顾及空间结构的滤波器(MSF)以剔除粗差,增强区域共性;最后,基于MSF与图像处理技术对速度场进行空间加密,生成了研究区域空间内连续的地壳垂向形变图,即区域GNSS影像.随后,针对两个研究区域,分别利用MSF验证实验与棋盘格检测验证了GNSS成像方法的合理性及生成GNSS影像的可靠性;并通过对比使用顾及空间结构滤波前后的各测站速度与不确定性生成的GNSS影像,验证了顾及空间结构的滤波方法在GNSS影像生成中的必要性,并分析了其中存在过度平滑与规则圆弧状突变边缘的问题,讨论了可能的解决方案.最终,将两区域GNSS影像结果与已有的大地测量学及地球动力学结果进行了对比,发现美国西部地区的GNSS影像正确反映出了海岸山脉以峰值速度为2mm·a~(-1),内华达山脉以峰值速度为3mm·a~(-1),以及赫布根湖地区以峰值速度为1.5mm·a~(-1)隆升;洛杉矶地区(峰值速度为-2.5mm·a~(-1)),维多利亚河及其河谷地区(速度为-1.5mm·a~(-1)),以及蛇河平原东部、蒙大拿州西南部(速度为-1mm·a~(-1)左右)的沉降运动;中国大陆的GNSS影像同样反映出喜马拉雅山脉与青藏高原南部(速度呈现为1.0mm·a~(-1)),华北地块与天山地块(速度为1.5mm·a~(-1)与0.3~0.6mm·a~(-1))等典型区域的隆升;长江下游地区以苏锡常地区(速度为-2.1mm·a~(-1))为中心,向外速度逐渐减小的沉降运动,以及华南地区(速度呈现为-0.6~-1.5mm·a~(-1))、东北地区(速度呈现为-0.6~-1.5mm·a~(-1))、塔里木盆地(速度呈现为-1.2mm·a~(-1))等区域的沉降运动.因此,本文认为GNSS影像具有合理性与正确性,有助于地壳垂向形变的整体时空分布特征研究.  相似文献   

19.
青藏高原隆升对中国、亚洲乃至世界的气候都有着重要影响,研究青藏高原地壳隆升速率具有重大意义.本文利用2004—2015年期间高覆盖度的卫星重力数据,通过去除陆地储水的重力效应获得地壳隆升引起的重力变化速率,基于直立长方体垂直运动与重力变化的关系模型反演了该区域的地壳隆升速率分布.研究结果表明在300 km的空间尺度下青藏高原隆升速率分布具有不均匀的特点,表现为以冈底斯山—唐古拉山—鲜水河断裂带为界线,其两侧的速率差异较大.位于界线以南,沿喜马拉雅推覆构造带的区域平均隆升速率为2.01±0.87 mm·a-1,其中西侧的印度板块与东侧的缅甸板块隆升速率分别为~2.43 mm·a-1、~2.89 mm·a-1,位于两板块之间的区域隆升速率为~0.69 mm·a-1;位于界线以北,除了天山区域和华北板块的隆升速率为~1 mm·a-1,其他区域隆升现象不明显,其速率为~0 mm·a-1.我们发现存在两条均穿过正断裂带区域的隆升速率梯度带,其中一条为从加德满都到塔里木盆地,其恰好穿过青藏高原内部的正断裂带,另一条为从那加山到四川盆地,其恰好穿过大理正断裂带.本文反演的青藏高原隆升速率与以往观测到的GPS结果有很好的一致性,为青藏高原隆升、地壳增厚等科学问题提供理论支持.  相似文献   

20.
西南天山地表三维位移场及断层位错模型   总被引:1,自引:0,他引:1       下载免费PDF全文
利用1992—2012年间西南天山GPS观测和2003—2009年EnviSAT卫星InSAR图像,构建西南天山与塔里木盆地间(喀什坳陷)震间变形的三维位移场,约束区域内滑脱断层运动模型.结果显示:位于喀什坳陷基底与沉积盖层间埋深为12~18km的主滑脱断层进入西南天山(迈丹—喀拉铁克断裂带以北)沿高角度断坡深入天山底部至23~33km,并北倾1°~2°延伸至天山内部,从完全闭锁到自由蠕滑,滑动速率9~10mm·a-1.依据断层位错模型,1902年阿图什M8大地震可能从铁列克断层根部23km左右开始破裂,沿高角度断坡断层扩展25~30km的距离至科克塔木背斜南翼托特拱拜孜—阿尔帕雷克断裂.1902年阿图什地震可能导致阿图什背斜下方埋深2~12km的高角度断坡断层以2~3mm·a-1速率持续蠕滑,蠕滑过程释放的应力等价于一次Mw6.7左右的中强地震,西南天山及喀什坳陷基底滑脱断层控制了西南天山及前陆地带的现今变形和地震活动.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号