首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
致密油的勘探开发,使松辽盆地南部的石油资源结构发生了较大变化,因此需要开展新一轮系统的资源评价。松辽盆地南部石油资源主要分布于中浅层,中浅层发育下部、中部和上部等3套成藏组合,常规油在3个组合中均有分布,致密油发育于下组合。对于常规油,建立了构造、构造-岩性和岩性等3种类型的刻度区,划分了13个评价单元,资源评价方法以统计法和类比法为主;对于致密油,建立了1个刻度区,按照渗透率大小划分了3个评价单元,资源评价方法采用了资源丰度分类类比法、小面元容积法。评价结果显示:松辽盆地南部中浅层石油资源量约为32.2×10~8t,其中常规油资源量为22.5×10~8 t,致密油资源量为9.7×10~8 t;剩余石油资源量约10×10~8 t,其中,常规油为5.7×10~8 t,主要分布于高台子油层和萨尔图油层,致密油为4.3×10~8 t,主要分布于扶余油层。大情字井地区的高台子油层和乾安地区的扶余油层,是近期—中期勘探的重点区带。  相似文献   

2.
松辽盆地三肇凹陷扶余油层发育河流-浅水三角洲环境下形成的低渗透致密砂岩储集层,已发现的探明储量以常规砂岩储层中的岩性油藏为主。剩余资源以赋存于孔隙度小于10%、渗漏率小于1×10-3 μm2储集层中的致密油为主。本文分析三肇凹陷扶余油层致密油成藏条件,采用致密油的资源评价方法(小面元容积法、资源丰度类比法及EUR类比法)对研究区源下致密油资源进行评价,并初步估算青山口组一段泥岩的生烃量,获取了泉四段致密油的地质资源量、运聚系数、最终可采资源量、可采系数、地质资源丰度和可采资源丰度等关键参数,这类参数代表了松辽盆地源下致密油资源评价的关键参数,对评价其它地区相同类型的致密油具有借鉴意义。  相似文献   

3.
长春岭背斜带位于松辽盆地东南隆起区,南邻双城、北邻三肇两个生烃凹陷。为明确其油源和成藏控制因素,利用萜烷、伽马蜡烷和藿烷等生物标志物进行原油类型和油--油对比研究。结果表明长春岭背斜带和朝阳沟阶地扶余油层原油为I 类,双城凹陷原油类型为II 类。通过三环萜/五环萜与 Tm/Ts 比值对比可知,长春岭背斜带与朝阳沟阶地扶余油层原油相似,与双城凹陷的原油存在明显区别。结合烃源岩成熟度、生排烃能力和平面分布可知,长春岭背斜带的石油来自其北部的三肇凹陷青山口组一段烃源岩的可能行较大,为上生下储组合。南部双城凹陷供油少的原因是烃源岩成熟度低、排烃能力差。用泥岩压实法恢复的古构造结果表明,位于现今高部位的勘探失利井实际上处于古构造的低部位,不是主成藏期油气运聚的有利方位,因而无油气显示。生烃中心的分布、成藏期的古构造背景、近南北向展布的砂体及断层是控制本区油气富集的主要因素。  相似文献   

4.
通过油气成藏条件分析,探讨了松辽盆地北部宋芳屯油田芳3区块葡萄花和扶杨油层的油气成藏特征与油气富集条件.分析认为,芳3区块的圈闭主要为断层圈闭、断层-岩性圈闭,成藏的关键控制因素是储集层上倾方向的断层遮挡.沟通葡萄花储集层与烃源岩的断层规模一般都比较大,而沟通扶杨油层与烃源岩的断层以小规模为主.烃源岩是青山口组泥岩,就研究区的油气富集来说,有利烃源岩主要位于研究区内及其附近,东部三肇凹陷主体部位烃源岩对研究区的贡献有限;葡萄花油层物性、油气运移条件明显好于扶杨油层.综合分析认为,葡萄花油层的油气富集潜力要高于扶杨油层.  相似文献   

5.
为准确评价湖相烃源岩的排油量及致密油资源潜力,结合湖相I型有机质的黄金管热模拟实验和青山口组烃源岩的有机地球化学分析,对松辽盆地湖相烃源岩生烃特征、动力学参数和排油效率进行了研究。热模拟实验的产物定量结果表明,松辽盆地青山口组湖相烃源岩具有可观的生油潜力,最大生油量约为600 mg/g·TOC,主要的生油阶段在Easy Ro=0.5%~1.2%。动力学计算结果表明,该烃源岩生油的平均活化能为218.5 k J/mol,重质组分生成活化能要低于轻质组分。结合青山口组烃源岩的生油动力学参数和英X58井热史的地质推演,证实该井湖相烃源岩的当前生油转化率为40%~60%,生油量为240~360 mg/g·TOC;通过残留烃的定量,计算得到该烃源岩的排油量为150~200mg/g·TOC,相对排油效率约为60%。生油量及排油效率结果表明,松辽盆地致密油资源潜力大。  相似文献   

6.
松辽盆地北部中央坳陷白垩系泉头组扶余油层发育河流-浅水三角洲环境下形成的低渗透致密砂岩储集层。在已提交的探明储量中, 储集层孔隙度平均为11. 8%, 渗透率平均为2. 30×10-3 μm2, 以岩性油藏为主;剩余勘探目标以赋存于孔隙度小于10%、渗透率小于1×10-3 μm2, 储集层中的致密油为主。从烃源岩、构造、断裂和储集层4个方面阐述了扶余油层致密油成藏主控因素, 认为成熟烃源岩控制了研究区致密油分布范围, 构造高部位是油气运聚指向区, 北西向断裂带控制油气富集, 河道砂体控制致密油“甜点”区。采用类比法进行致密油资源潜力评价, 初步估算扶余油层致密油资源潜力为13. 09×108 t, 是大庆油田资源接替的重要领域。  相似文献   

7.
杨可薪  肖军  王宇  宁霄洋 《沉积学报》2017,35(3):600-610
通过钻井、测井、岩芯及实验数据综合分析,对松辽盆地北部青山口组致密油特征与聚集模式进行了深入研究。结果表明,松辽盆地北部青山口组致密油分布在三角洲前缘及湖相区,储集层属于片状浊流形成的致密储层,孔隙度一般小于10%,局部可达到15%,渗透率普遍小于0.1×10-3 μm2。储集空间为粒间孔、粒内溶孔、铸模孔、微裂缝等,孔隙直径分布在5~200 μm,孔喉半径小于0.5 μm。烃源岩是青山口组一段和二段湖相泥岩,具有广覆式分布特点,干酪根为Ⅰ型或Ⅱ1型,平均有机碳含量(TOC)为1%~3%,热成熟度(Ro)为0.9%~1.1%,属优质成熟烃源岩。聚集模式为储层平面上大面积连续分布,无明显边界,纵向上储层与源岩交互叠置形成千层饼状,具有紧密接触的源储共生型成藏组合。因此,致密油聚集宏观上受成熟烃源岩控制,其次取决于致密储层分布。致密油储层普遍超压,含油级别为油斑和油迹,不存在油浸和富含油,原油属于低黏度轻质原油,单井无自然产能,采取水平钻井并进行大规模分段体积压裂才能获得工业产能。对其沉积及聚集模式的认识为松辽盆地北部致密油勘探拓展了新的空间,具有实际指导意义。  相似文献   

8.
为了量化表征北黄海盆地东部坳陷中生界主力烃源岩生、排烃特征,综合利用镜质体反射率(Ro)、残余有机碳含量(TOC)、岩石热解、干酪根镜检及饱和烃色谱等资料,在总结研究区烃源岩地化特征的基础上,通过油源对比明确主力烃源岩层并依托盆地模拟方法量化其生、排烃贡献.结果表明,北黄海盆地东部坳陷中生界的两类原油均来源于区内中侏罗统和上侏罗统两套主力烃源岩层,其中,中侏罗统烃源岩的有机质丰度整体处于"好-最好"级别,上侏罗统烃源岩的有机质丰度则以"中等-好"为主;二者均存在早白垩世末期和早中新世两次生、排烃高峰,但上侏罗统的排烃速率[qe(max)=27.3×106 t/Ma]远高于中侏罗统的排烃速率[qe(max)=4.2×106 t/Ma],对研究区油气成藏的贡献更大.虽然下白垩统暗色泥岩的生烃潜力有限,但其底部砂岩与紧邻上侏罗统主力烃源岩层构成的"下生上储"式的源储配置关系是区内最重要的勘探目的层,其次为中、上侏罗统内部"自生自储"式的有利成藏组合,同时,中侏罗统下部"上生下储"式的成藏组合也应予以重视.   相似文献   

9.
松辽盆地滨北地区油气运移输导体系分析   总被引:5,自引:1,他引:4  
传统的围绕生烃洼陷的油气勘探在滨北地区受到了严峻的考验,面积占整个松辽盆地1/3的滨北地区的油气勘探一直没有取得突破性进展.分析认为滨北地区存在三大背斜构造带(绥棱背斜带、乾元背斜带和克山-依龙背斜带)和滨州走滑断裂带所构成的输导体系.三大背斜带的形成和定型均早于盆地青山口组主力烃源岩大规模生排烃时间(白垩纪末),并分别倾没于齐家-古龙凹陷北部、黑鱼泡凹陷和三肇凹陷,凹陷生烃潜力的差异决定了紧邻输导体系油气勘探潜力的差异,其中齐家北凹陷和三肇凹陷已经发现了较丰富的油气资源,决定了绥棱背斜带和克山-依龙背斜带油气勘探的潜力较大.乾元背斜带临近黑鱼泡凹陷,由于黑鱼泡凹陷烃源岩成熟度低,烃源岩没有进入大规模生排烃阶段,因此勘探潜力有限;滨州走滑断裂带横穿齐家-古龙凹陷和三肇凹陷,断裂活动时间与烃源岩成熟时间一致,有利于油气的定向运移,同时晚期构造活动西段强而东段弱,从油气保存的角度看,有可能东段优于西段,但从油气的垂向运移看,西段更有可能形成垂向上多层系含油的复式油气聚集带,因此沿整个滨州走滑断裂带是有利的勘探领域.  相似文献   

10.
烃源岩之下岩性油藏成藏模拟实验及其机制分析   总被引:8,自引:9,他引:8       下载免费PDF全文
在总结松辽盆地北部三肇凹陷扶余油层和杨大城子油层地质特征的基础上,设计了烃源岩之下岩性油藏实验模型;通过物理模拟实验,再现了烃源岩之下岩性油藏的形成过程,对油气运移的受力状态进行分析,探讨了烃源岩之下岩性圈闭中油气聚集成藏的机制.实验结果及实例表明,该类油藏的形成须满足两个地质条件,即上覆优质烃源岩具有足够超压和有断裂沟通烃源岩与下伏砂体,超压是油气向下运移的动力,断裂则是其主要运移通道,这对寻找烃源岩之下岩性油藏具有重要的指导意义.  相似文献   

11.
This paper reports the first results of a study of 11 isotope systems (3He/4He, 40Ar/36Ar, 34S/32S, 65Cu/63Cu, 62Ni/60Ni, 87Sr/86Sr, 143Nd/144Nd, 206–208Pb/204Pb, Hf–Nd, U–Pb, and Re–Os) in the rocks and ores of the Cu–Ni–PGE deposits of the Norilsk ore district. Almost all the results were obtained at the Center of Isotopic Research of the Karpinskii All-Russia Research Institute of Geology. The use of a number of independent genetic isotopic signatures and comprehensive isotopic knowledge provided a methodic basis for the interpretation of approximately 5000 isotopic analyses of various elements. The presence of materials from two sources, crust and mantle, was detected in the composition of the rocks and ores. The contribution of the crustal source is especially significant in the paleofluids (gas–liquid microinclusions) of the ore-forming medium. Crustal solutions were probably a transport medium during ore formation. Air argon is dominant in the ores, which indicates a connection between the paleofluids and the atmosphere. This suggests intense groundwater circulation during the crystallization of ore minerals. The age of the rocks and ores of the Norilsk deposits was determined. The stage of orebody formation is restricted to a narrow age interval of 250 ± 10 Ma. An isotopic criterion was proposed for the ore-bearing potential of mafic intrusions in the Norilsk–Taimyr region. It includes several interrelated isotopic ratios of various elements: He, Ar, S, and others.  相似文献   

12.
最新的流行病学研究表明,空气中较高浓度的悬浮细颗粒可能对人类的健康有不利的影响。根据该项研究显示,由于心脏病、慢性呼吸问题和肺功能指标恶化而导致死亡率的升高与细尘粒子有关。这些研究结果已经促使欧盟于1999年4月出台了限制空气中二氧化硫、二氧化氮、氧化氮、铅和颗粒物含量的法案(1999/30/EC),对各项指标包括对可吸入PM10颗粒的浓度提出了新的限制性指标。PM10颗粒是指可以通过预分级器分离采集的气体动力学直径小于10μm的细颗粒。目前研究的兴趣重点逐步偏向PM2.5这些更细微颗粒物,PM2.5这种颗粒物对健康有明显的不利影响。在欧盟指令2008/50/EC中,对PM10和PM2.5都提  相似文献   

13.
Komatiites are mantle-derived ultramafic volcanic rocks. Komatiites have been discovered in several States of India, notably in Karnataka. Studies on the distribution of trace-elements in the komatiites of India are very few. This paper proposes a simple, accurate, precise, rapid, and non-destructive wavelength-dispersive x-ray fluorescence (WDXRF) spectrometric technique for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in komatiites, and discusses the accuracy, precision, limits of detection, x-ray spectral-line interferences, inter-element effects, speed, advantages, and limitations of the technique. The accuracy of the technique is excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Zr, Nb, Ba, Pb, and Th and very good (within 4%) for Y. The precision is also excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th. The limits of detection are: 1 ppm for Sc and V; 2 ppm for Cr, Co, and Ni; 3 ppm for Cu, Zn, Rb, and Sr; 4 ppm for Y and Zr; 6 ppm for Nb; 10 ppm for Ba; 13 ppm for Pb; and 14 ppm for Th. The time taken for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in a batch of 24 samples of komatiites, for a replication of four analyses per sample, by one operator, using a manual WDXRF spectrometer, is only 60 hours.  相似文献   

14.
《Applied Geochemistry》2001,16(2):137-159
Five hundred and ninety-eight samples of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) collected from a 188,000 km2 area of the central Barents region (NE Norway, N Finland, NW Russia) were analysed by ICP-AES and ICP-MS. Analytical results for Al, B, Ba, Ca, K, La, Mg, Mn, Na, P, Rb, Si, Sr, Th, U and Y concentrations are reported here. Graphical methods of data analysis, such as geochemical maps, cumulative frequency diagrams, boxplots and scatterplots, are used to interpret the origin of the patterns for these elements. None of the elements reported here are emitted in significant amounts from the smelting industry on the Kola Peninsula. Despite the conventional view that moss chemistry reflects atmospheric element input, the nature of the underlying mineral substrate (regolith or bedrock) is found to have a considerable influence on moss composition for several elements. This influence of the chemistry of the mineral substrate can take place in a variety of ways. (1) It can be completely natural, reflecting the ability of higher plants to take up elements from deep soil horizons and shed them with litterfall onto the surface. (2) It can result from naturally increased soil dust input where vegetation is scarce due to harsh climatic conditions for instance. Alternatively, substrate influence can be enhanced by human activity, such as open-cast mining, creation of ‘technogenic deserts’, or handling, transport and storage of ore and ore products, all of which magnify the natural elemental flux from bedrock to ground vegetation. Seaspray is another natural process affecting moss composition in the area (Mg, Na), and this is most visible in the Norwegian part of the study area. Presence or absence of some plant species, e.g., lichens, seems to influence moss chemistry. This is shown by the low concentrations of B or K in moss on the Finnish and Norwegian side of the (fenced) border with Russia, contrasting with high concentrations on the other side (intensive reindeer husbandry west of the border has selectively depleted the lichen population).  相似文献   

15.
This paper discusses the result of the detailed investigations carried out on the coal characteristics, including coal petrography and its geochemistry of the Pabedana region. A total of 16 samples were collected from four coal seams d2, d4, d5, and d6 of the Pabedana underground mine which is located in the central part of the Central-East Iranian Microcontinent. These samples were reduced to four samples through composite sampling of each seam and were analyzed for their petrographic, mineralogical, and geochemical compositions. Proximate analysis data of the Pabedana coals indicate no major variations in the moisture, ash, volatile matter, and fixed carbon contents in the coals of different seams. Based on sulfur content, the Pabedana coals may be classified as low-sulfur coals. The low-sulfur contents in the Pabedana coal and relatively low proportion of pyritic sulfur suggest a possible fresh water environment during the deposition of the peat of the Pabedana coal. X-ray diffraction and petrographic analyses indicate the presence of pyrite in coal samples. The Pabedana coals have been classified as a high volatile, bituminous coal in accordance with the vitrinite reflectance values (58.75–74.32 %) and other rank parameters (carbon, calorific value, and volatile matter content). The maceral analysis and reflectance study suggest that the coals in all the four seams are of good quality with low maceral matter association. Mineralogical investigations indicate that the inorganic fraction in the Pabedana coal samples is dominated by carbonates; thus, constituting the major inorganic fraction of the coal samples. Illite, kaolinite, muscovite, quartz, feldspar, apatite, and hematite occur as minor or trace phases. The variation in major elements content is relatively narrow between different coal seams. Elements Sc,, Zr, Ga, Ge, La, As, W, Ce, Sb, Nb, Th, Pb, Se, Tl, Bi, Hg, Re, Li, Zn, Mo, and Ba show varying negative correlation with ash yield. These elements possibly have an organic affinity and may be present as primary biological concentrations either with tissues in living condition and/or through sorption and formation of organometallic compounds.  相似文献   

16.
17.
18.
19.
20.
The Kuskokwim River at Bethel, Alaska, drains a major mercury-antimony metallogenic province in its upper reaches and tributaries. Bethel (population 4000) is situated on the Kuskokwim floodplain and also draws its water supply from wells located in river-deposited sediment. A boring through overbank and floodplain sediment has provided material to establish a baseline datum for sediment-hosted heavy metals. Mercury (total), arsenic, antimony, and selenium contents were determined; aluminum was also determined and used as normalizing factor. The contents of the heavy metals were relatively constant with depth and do not reflect any potential enrichment from upstream contaminant sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号