首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Axisymmetric magnetohydrodynamic (MHD) simulations have been made of the formation of jets from a Keplerian disk threaded by a magnetic field. The disk is treated as a boundary condition, where matter with high specific entropy is ejected with a Keplerian azimuthal speed and a poloidal speed less than the slow magnetosonic velocity, and where boundary conditions on the magnetic fields correspond to a highly conducting disk. Initially, the space above the disk, the corona, is filled with high specific entropy plasma in the thermal equilibrium in the gravitational field of the central object. The initial magnetic field is poloidal and is represented by the superposition of the fields of monopoles located below the plane of the disk.The rotation of the disk twists the initial poloidal magnetic field lines, and this twist propagates into the corona pushing matter into jet-like outflow in a cylindrical region. After the first switch-on wave, which originates during the first rotation period of the inner radius of the disk, the matter outflowing from the disk starts to flow and accelerate in thez-direction owing to both the magnetic and pressure gradient forces. The flow accelerates through the slow magnetosonic and Alfvén surfaces and at larger distances through the fast magnetosonic surface. The flow velocity of the jet is approximately parallel to thez-axis, with the collimation mainly a result of the pinching force of the toroidal magnetic field. The energy flux of the flow increases with increasing magnetic field strength on the disk. Some of the cases studied have been run for long times, 60 rotation periods of the inner radius of the disk, and show indications of approaching a stationary state.  相似文献   

2.
Radiation from an optically thick, tenuous, isothermal and magnetized plasma is considered under conditions typical for X-ray pulsars, in the approximation of coupled diffusion of normal modes. The spectra are calculated of the fluxes and specific intensities of outgoing radiation, their dependences on the plasma densityN, temperatureT and magnetic fieldB are analysed with due regard to the vacuum polarization by a strong magnetic field. Simple analytical expressions are obtained in the limiting cases for the fluxes and intensities. It is shown that atE B »E a (E B =11.6B 12 keV,E a ?0.1N 22 1/2 T 1 ?3/4 keV,B 12=B/1012 G,N 22=N/1022 cm?3,T 1=T/10 keV) the magnetic field strongly intensifies the flux and changes its spectrum in the regionE a ?E ?E B . AtE ?T the spectrum of the energy flux is almost flat in the region \(\sqrt {E_a E_B } \lesssim E \lesssim E_B \) . For homogeneous plasma without Comptonization the cyclotron line atE?=E B appears in emission, though in many other cases it may appear in absorption. The vacuum polarization may produce the ‘vacuum feature’ atE?E W ?13N 22 1/2 B 12 ?1 keV, which, as a rule, appears in absorption. The intensity spectra vary noticeably with the direction of radiation, in particular, at some directions nearB, the spectra become harder than in other directions. Quantization of the magnetic field (E B >T) strongly increases the plasma luminosity (∝E B /T for homogeneous plasma). The results obtained explain a number of basic features in the observed X-ray pulsar spectra.  相似文献   

3.
The magnetic fields of white dwarfs distort their shape generating an anisotropic moment of inertia. A magnetized white dwarf that rotates obliquely relative to the symmetry axis has a mass quadrupole moment that varies in time, so it will emit gravitational radiation. The Laser Interferometer Space Antenna ( LISA ) mission may be able to detect the gravitational waves from two nearby, rapidly rotating white dwarfs.  相似文献   

4.
We show that a fundamental choice between various models of an accretion disk around a black hole can be made based on the spectral wavelength distribution of the polarization. This conclusion is based on the possibility of comparing the observed spectral distribution of the polarization with its theoretical values obtained in various accretion disk models. The expected power-law wavelength (frequency) dependences of the polarization for various accretion disk models known in the literature are presented in the table.  相似文献   

5.
The structure and magnitude of the electromagnetic field produced by a rotating accretion disk around a black hole were determined. The disk matter is assumed to be a magnetized plasma with a frozenin poloidal magnetic field. The vacuum approximation is used outside the disk.  相似文献   

6.
7.
8.
We consider the power of a relativistic jet accelerated by the magnetic field of an accretion disc. It is found that the power extracted from the disc is mainly determined by the field strength and configuration of the field far from the disc. Comparing it with the power extracted from a rotating black hole, we find that the jet power extracted from a disc can dominate over that from the rotating black hole. However, in some cases, the jet power extracted from a rapidly rotating hole can be more important than that from the disc, even if the poloidal field threading the hole is not significantly larger than that threading the inner edge of the disc. The results imply that the radio-loudness of quasars may be governed by its accretion rate, which might be regulated by the central black hole mass. It is proposed that the different disc field generation mechanisms might be tested against observations of radio-loud quasars if their black hole masses are available.  相似文献   

9.
The stability of an isothermal, magnetized and causally limited viscosity accretion disk is examined in this paper. We find that the viscous modes are always stable throughout the disk, and the magneto-acoustic modes are pulsationally unstable. The results show that the Mach numbers do effect the instabilities of the disk and the magnetic field enhances the instability property of the radial oscillation. Our results are useful for understanding the time variations of AGN.  相似文献   

10.
11.
By using rather conservative estimates based on the simplest polar cap model, we search the ATNF Pulsar Catalogue for strongly magnetized stars that could accelerate relativistic protons up to the curvature pion production threshold. The best candidate turns out to be the 16 ms pulsar J0537-6910, but the corresponding characteristic parameter χ=a/m p is yet too small to give origin to observable signals. We show that, for pulsars with period P≈1 ms, a surface polar magnetic field B≈1012 G is required in order to induce detectable curvature pion radiation from accelerated protons in the magnetosphere. Some other emission processes are also considered.  相似文献   

12.
This is the first paper to consider the effects of both magnetic field and self-gravity on the pulsational instability. Our main new results are that the self-gravity enhances the instability of the magneto-acoustic mode in the outer disk strongly, and also affects the instability in the inner disk, but stabilized the viscous mode. The effect of self-gravity is much greater than that of magnetic field in the outer disk, while the effect of magnetic field on the instability is weaker than that in the previous work's (Wuet al., 1995; Yanget al., 1995), in which the self-gravity has not been considered. Finally, we discuss our results.  相似文献   

13.
A nonlinear Schrödinger equation is obtained for linearly polarized electromagnetic waves propagating across the ambient magnetic field in an electron-positron plasma. The nonlinearities arising from wave intensity induced particle mass modulation, as well as harmonic generation are incorporated. Modulational instability and localization of pulsar radiation are investigated.  相似文献   

14.
We analyze the polarization effects of the radiation scattered in conical optically thin plasma envelopes. The density of free electrons in the envelope is assumed to decrease in inverse proportion to the square of the distance from the radiation source. The magnetic field, radial or azimuthal, is also assumed to vary in inverse proportion to the square of the distance from the center of the system. We take into account the fact that the scattered radiation near the surface of a star or a quasar is virtually unpolarized (the model of a nonpoint star). The spectra of linear polarization and its position angle are given for conical-envelope opening half-angles of 7.5°, 15°, and 30°. The inclination of the cone axis with respect to the observer’s direction took on values of 30°, 45°, 60°, 90°, 120°, 135°, and 150°. We allowed for the fact that part of the envelope is screened from the observer by the star itself. We also give polarization spectra for the radiation scattered in two mutually opposite conical envelopes. We use the results of our theoretical calculations to analyze the polarimetric observations of relativistic jets in cosmic gamma-ray bursts and active galactic nuclei. As a result, we estimated the magnetic fields in these objects. The constraint on the density of relativistic electrons is <107 cm?3.  相似文献   

15.
We present computed radiation spectra for the boundary layer (BL) of the accretion disk that is formed near the surface of a neutron star. Both free-free processes and Comptonization were taken into account. Our computations are based on the hydrodynamic solution obtained by Popham and Sunyaev (2001) for the BL structure. The computed spectra are highly diluted compared to the Planck spectra of the same surface temperature. They are complex in shape; in particular, an intense Wien emission component is formed in their high-energy region at high accretion rates. In general, the computed spectra are harder than those observed in actual X-ray sources. This is the result of a very high temperature found by Popham and Sunyaev (2001) for the BL. We show that such temperatures could result from an oversimplified treatment of radiative transfer in their paper, which completely ignored the frequency dependence of the matter opacity and radiation intensity. Our computations indicate that at moderate accretion rates, a proper treatment of radiative transfer with allowance for Comptonization leads to appreciably lower plasma temperatures and to softer radiation spectra.  相似文献   

16.
Strong (B?109 G) and superstrong (B?1014 G) magnetic fields profoundly affect many thermodynamic and kinetic characteristics of dense plasmas in neutron star envelopes. In particular, they produce strongly anisotropic thermal conductivity in the neutron star crust and modify the equation of state and radiative opacities in the atmosphere, which are major ingredients of the cooling theory and spectral atmosphere models. As a result, both the radiation spectrum and the thermal luminosity of a neutron star can be affected by the magnetic field. We briefly review these effects and demonstrate the influence of magnetic field strength on the thermal structure of an isolated neutron star, putting emphasis on the differences brought about by the superstrong fields and high temperatures of magnetars. For the latter objects, it is important to take proper account of a combined effect of the magnetic field on thermal conduction and neutrino emission at densities ρ?1010 g?cm?3. We show that the neutrino emission puts a B-dependent upper limit on the effective surface temperature of a cooling neutron star.  相似文献   

17.
In this lecture, I will briefly address several phenomena expected when magnetic fields are present in the innermost regions of circumstellar accretion discs: (i) the magneto-rotational instability and related “dead zones”; (ii) the formation of magnetically-driven jets and the observational constraints derived from Classical T Tauri stars; (iii) the magnetic star–disc interactions and their expected role in the stellar spin down.It should be noted that the magnetic fields invoked here are organized large scale magnetic fields, not turbulent small scale ones. I will therefore first argue why one can safely expect these fields to be present in circumstellar accretion discs. Objects devoid of such large scale fields would not be able to drive jets. A global picture is thus gradually emerging where the magnetic flux is an important control parameter of the star formation process as a whole. High angular resolution technics, by probing the innermost circumstellar disc regions should provide valuable constraints.  相似文献   

18.
19.
We study the effects of winds on advection dominated accretion flows in the presence of a global magnetic field under a self-similar treatment. The disk gas is assumed to be isothermal. For a steady state structure of such accretion flows a set of self similar solutions are presented. We consider the wind in a general magnetic field with three components (r,φ,z) in advection-dominated accretion flows. The mass-accretion rate $\dot{M}$ decreases with radius r as $\dot{M}\propto r^{s+1/2}$ , where s is an arbitrary constant. We will see, by increasing the wind parameter s, radial and rotational velocities increase.  相似文献   

20.
The exact solutions for the equilibrium of rotating gaseous disk with poloidal magnetic field are obtained. The stability of the disk with respect to uniform expansion and contraction is investigated by means of the variational principle. It is shown that if the equilibrium is determined by gravitational and magnetic forces only, the disk is in neutral equilibrium with respect to perturbations of the form r=r. The instability to short-waves perturbations is studied by the quasi-classical method. The analysis shows that if the magnetic field isH>2G, where is the surface density, then these perturbations are stabilized. The configurations of the electrical field induced by the rotation of magnetized disk are found. In conclusion, the questions of the evolution of the disk are discussed in connection with the quasar model when pulsar-like radiation is taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号