首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The extragalactic sources of ultra-high-energy (E > 4 × 1019 eV) cosmic rays that make a small contribution to the flux of particles recorded by ground-based arrays are discussed. We show that cosmic rays from such sources can produce a noticeable diffuse gamma-ray flux in intergalactic space compared to the the data obtained with Fermi LAT (onboard the Fermi space observatory). A possible type of active galactic nuclei (AGNs) in which cosmi-ray protons can be accelerated to energies 1021 eV is considered as an illustration of such sources. We conclude that ultra-high-energy cosmic rays from the AGNs being discussed can contribute significantly to the extragalactic diffuse gamma-ray emission. In addition, a constraint on the fraction of the AGNs under consideration relative to the BL Lac objects and radio galaxies has been obtained from a comparison with the Fermi LAT data.  相似文献   

2.
The effect of the extragalactic magnetic field on the propagation of ultra-high-energy cosmic rays (UHECRs) is investigated. We use the infrared galaxy catalog IRAS PSCz to reconstruct the magnetic field distribution in the Local Universe. The magnetic field induction is considered as a power function of the galactic infrared luminosity density: B = Kρβ. In contrast to some earlier studies in which the exponent β = 2/3 corresponded to the freezing-in condition, the parameters K and β are estimated from the field inductions normalized by the expected maximum inductions (strong field) and minimum inductions (weak field) in galaxy clusters and voids, respectively. Maps of angular deflections of UHECRs are presented for these magnetic field models. We found that the protons with energies E > 4 × 1019 eV are not significantly deflected from their sources in a sphere with a radius of 100 Mpc only in the case of the weak magnetic field model (the deflections are comparable to the errors of modern detectors). The effect of the extragalactic magnetic field on the UHECR spectrum is investigated, with Virgo A and Arp 299 taken as potential sources.  相似文献   

3.
The sources of ultrahigh energy cosmic rays (UHECRs, E >1018 eV) are still unknown, mainly due to the loss of the direction to the source after the deflection of cosmic rays’ (CRs) trajectories in the galactic and extragalactic magnetic fields. With the increase in CR energy (rigidity), the influence of the magnetic field weakens; therefore, the most promising approach is to search for the sources of events with the highest energy. In our work, we expand the existing UHECR (E > 1020 eV) sample from 33 to 42 events by calibrating the AUGER events. The sample is characterized by the presence of an event triplet in a circle of radius 3°. The highest-energy event is still the shower (E = 3.2 × 1020 eV) detected with the Fly’s Eye fluorescent detector (FE-event) in 1993. The possible sources of the triplet and the FE-event are analyzed. Taking into account the deflection of CR trajectories in the extragalactic and galactic magnetic fields, it is shown that transient sources of the FE-event and the triplet may be galaxies with active star formation, where CRs are accelerated by newborn millisecond pulsars. Among the galactic sources, the potential candidates are young pulsars that might have had millisecond periods at birth and giant magnetar flares.  相似文献   

4.
Being the largest gravitationally bound structures in the Universe, galaxy clusters are huge reservoirs of photons generated by the bremsstrahlung of a hot cluster gas. We consider the absorption of high-energy photons from distant cosmological gamma-ray sources by the bremsstrahlung of galaxy clusters. The magnitude of this effect is the third in order of smallness after the effects of absorption by the cosmic microwave background and absorption by the extragalactic background light. Our calculations of the effect of absorption by the bremsstrahlung of galaxy clusters have shown that this effect manifests itself in the energy range ~1–100 GeV and can be τ ~ 10?5 in optical depth.  相似文献   

5.
During the GRIF experiment onboard the Mir orbiting station, the sky was monitored with a PX-2 wide-field (~1 sr) scintillation X-ray spectrometer to detect bursts in the photon energy range 10–300 keV. Because of the comprehensive instrumentation, which, apart from the X-ray and gamma-ray instruments, also included charged-particle detectors, the imitations of astrophysical bursts by magnetospheric electron precipitations and strongly ionizing nuclei were effectively filtered out. It was also possible to separate solar and atmospheric events. Several tens of bursts interpreted as being astrophysical were detected in the experiment at sensitivity levels S~10?7 erg cm?2 (for bursts whose spectra were characterized by effective temperatures kT~100 keV) and S~3×10?8 erg cm?2 (for bursts with kT~25 keV). Some of the soft gamma-ray or hard X-ray bursts with kT~10–50 keV were identified with the bursting pulsar GRO J1744-28. Our estimate of the detection rate for cosmological soft gamma-ray or hard X-ray bursts from the entire sky suggests that the distributions of long-duration (>1 s) gamma-ray bursts (GRBs) in characteristic energy kT and duration are inconsistent with the steady-state cosmological model in which the evolution of burst sources is disregarded. Based on GRIF and BATSE/CGRO data, we conclude that most of the GRB sources originate at redshifts 1<z<5.  相似文献   

6.
Using a reliablymeasured intrinsic (i.e., corrected for absorption effects) present-day luminosity function of high-mass X-ray binaries (HMXBs) in the 0.25–2 keV energy band per unit star formation rate, we estimate the preheating of the early Universe by soft X-rays from such systems. We find that X-ray irradiation, mainly executed by ultraluminous and supersoft ultraluminous X-ray sources with luminosity L X > 1039 erg s?1, could significantly heat (T >T CMB, where T CMB is the temperature of the cosmic microwave background) the intergalactic medium by z ~ 10 if the specific X-ray emissivity of the young stellar population in the early Universe was an order of magnitude higher than at the present epoch (which is possible due to the low metallicity of the first galaxies) and the soft X-ray emission from HMXBs did not suffer strong absorption within their galaxies. This makes it possible to observe the 21 cm line of neutral hydrogen in emission from redshifts z < 10.  相似文献   

7.
Having analyzed high-resolution observations of extragalactic compact radio sources with modern systems of radio telescopes, we obtained an estimate of the upper limit for the photon electric charge, eγ ? 3×10?33 of the elementary charge (assuming the photon charge to be energy independent). This is three orders of magnitude better than the limit obtained from radio pulsar timing. We also set a limit on the charge of a gamma-ray (energy ~0.1 MeV) photon. In the future, the estimate based on extragalactic sources can be improved significantly.  相似文献   

8.
Observational parameters of the optical and gamma-ray emissions from 58 gamma-ray bursts (GRBs) with discovered afterglows and known redshifts are analyzed. The distributions of these parameters and pair correlations between them are studied. Approximately half of the objects exhibit a relatively slow decrease in the optical flux at initial afterglow phases (with a power-law index in the decay law α < 1). Correlations have been found between the luminosities, energies, and durations of the optical and gamma-ray emissions, which can be explained by the presence of universal features in the light curves. A correlation of the peak luminosity for afterglows with the redshift and an anticorrelation of their durations with the redshift have been found for the first time. Against the background of a weak z dependence of the total afterglow energy, this effect can be explained by cosmological evolution of the GRB environment, which determines the rate of optical energy release.  相似文献   

9.
We examine the possibility that the observed cosmic-ray protons are of primary extragalactic origin. The present \(\bar p\) data are consistent with a primary extragalactic component having \(\bar p\) /p?3.2±0.7 x 10-4 independent of energy. Following the suggestion that most extragalactic cosmic rays are from active galaxies, we propose that most of the observed \(\bar p\) 's are alos from the same sites. This would imply the possibility of destroying the corresponding \(\bar \alpha \) 'sat the source, thus leading to a flux ratio \(\bar \alpha \) /α< \(\bar p\) /p. We further predict an estimate for \(\bar \alpha \) α~10-5, within the range of future cosmic-ray detectors. the cosmological implications of this proposal are discussed.  相似文献   

10.
We have calculated the intensities of the subordinate hydrogen lines formed during the recombination epoch at redshifts 800?z?1600. We show that an allowance for the angular momentum splitting of hydrogen atomic energy levels and the dipole transition selection rules can reveal absorption features in the cosmic microwave background recombination spectrum in the submillimeter wavelength range.  相似文献   

11.
Assuming that the energy gain by cosmic-ray (CR) particles is a stochastic process with stationary increments, we derive expressions for the shape of their energy spectrum up to energies E ~ 1018 eV. In the ultrarelativistic case under study, the energy is proportional to the momentum, whose time derivative is the force. According to the Fermi mechanism, a particle accelerates when it passes through a system of shock waves produced by supernova explosions. Since these random forces act on time scales much shorter than the particle lifetime, we assume them to be delta-correlated in time. In this case, due to the linear energy-momentum relationship, the mean square of the energy (increments) is proportional to the differential scale τ(E) ~ (≥E), where τ (≥E) is the cumulative time it takes for a particle to gain an energy ≥E. The probability of finding a particle with energy ≥E somewhere in the system is inversely proportional to the time it takes to gain the energy E. To estimate an upper limit for the space number density of CR particles, we use estimates of the CR volume energy density, a quantity known for our Galaxy. It is taken to be constant in the range 10 GeV ≤ E ≤ 3 × 106 GeV, where the index of the energy spectrum was found to be ?8/3 ≈ ?2.67 against its empirical value of ?2.7. In the range 3 × 106 GeV ≤ E < 109 GeV, the upper limit for the volume energy density is estimated by using the results from the previous range to be ?28/9 ≈ ?3.11 against its empirical value of ?3.1. The numerical coefficients in the suggested shapes of the spectrum can be determined by comparison with observational data. Thus, the CR energy spectrumis the result of the random walks of ultrarelativistic particles in energy/momentum space caused by the Fermi mechanism.  相似文献   

12.
We have compiled a catalog of 903 candidates for type 1 quasars at redshifts 3 < z < 5.5 selected among the X-ray sources of the “serendipitous” XMM-Newton survey presented in the 3XMMDR4 catalog (the median X-ray flux is ≈5 × 10?15 erg s?1 cm?2 in the 0.5–2 keV energy band) and located at high Galactic latitudes |b| > 20° in Sloan Digital Sky Survey (SDSS) fields with a total area of about 300 deg2. Photometric SDSS data as well infrared 2MASS and WISE data were used to select the objects. We selected the point sources from the photometric SDSS catalog with a magnitude error δ mz′ < 0.2 and a color i′ ? z′ < 0.6 (to first eliminate the M-type stars). For the selected sources, we have calculated the dependences χ2(z) for various spectral templates from the library that we compiled for these purposes using the EAZY software. Based on these data, we have rejected the objects whose spectral energy distributions are better described by the templates of stars at z = 0 and obtained a sample of quasars with photometric redshift estimates 2.75 < z phot < 5.5. The selection completeness of known quasars at z spec > 3 in the investigated fields is shown to be about 80%. The normalized median absolute deviation (Δz = |z spec ? z phot|) is σ Δz /(1+z spec) = 0.07, while the outlier fraction is η = 9% when Δz/(1 + z спек.) > 0.2. The number of objects per unit area in our sample exceeds the number of quasars in the spectroscopic SDSS sample at the same redshifts approximately by a factor of 1.5. The subsequent spectroscopic testing of the redshifts of our selected candidates for quasars at 3 < z < 5.5 will allow the purity of this sample to be estimated more accurately.  相似文献   

13.
One century ago Viktor Hess carried out several balloon flights that led him to conclude that the penetrating radiation responsible for the discharge of electroscopes was of extraterrestrial origin. One century from the discovery of this phenomenon seems to be a good time to stop and think about what we have understood about Cosmic Rays. The aim of this review is to illustrate the ideas that have been and are being explored in order to account for the observable quantities related to cosmic rays and to summarize the numerous new pieces of observation that are becoming available. In fact, despite the possible impression that development in this field is somewhat slow, the rate of new discoveries in the last decade or so has been impressive, and mainly driven by beautiful pieces of observation. At the same time scientists in this field have been able to propose new, fascinating ways to investigate particle acceleration inside the sources, making use of multifrequency observations that range from the radio, to the optical, to X-rays and gamma rays. These ideas can now be confronted with data.I will mostly focus on supernova remnants as the most plausible sources of Galactic cosmic rays, and I will review the main aspects of the modern theory of diffusive particle acceleration at supernova remnant shocks, with special attention for the dynamical reaction of accelerated particles on the shock and the phenomenon of magnetic field amplification at the shock. Cosmic-ray escape from the sources is discussed as a necessary step to determine the spectrum of cosmic rays at the Earth. The discussion of these theoretical ideas will always proceed parallel to an account of the data being collected especially in X-ray and gamma-ray astronomy.In the end of this review I will also discuss the phenomenon of cosmic-ray acceleration at shocks propagating in partially ionized media and the implications of this phenomenon in terms of width of the Balmer line emission. This field of research has recently experienced a remarkable growth, in that lines have been found to bear information on the cosmic-ray acceleration efficiency of supernova shocks.  相似文献   

14.
A statistical analysis of the spectral and temporal parameters for 546 triggering events on the APEX gamma-ray detector onboard the Phobos-2 spacecraft has revealed a group of 28 events that are probably short cosmic gamma-ray bursts (GRBs). The distribution of the full group of 74 events of the APEX experiment in duration parameter is bimodal in shape, which is in good agreement with the bimodal shape of the BATSE GRB distribution. A search for the detected group of short events using data from the LILAS X-ray and soft gamma-ray detector onboard the same spacecraft has yielded no positive result. A comparison of the APEX and LILAS data has led us to conclude that the short GRBs have a significantly reduced soft gamma-ray flux at energies <100 keV relative to the power law dN/dE=CE with the average index α=2.62.  相似文献   

15.
We show that including the recoil upon scattering in the Ly-α line can lead to a noticeable acceleration of the primordial hydrogen recombination. Thus, for example, for the ΛCDM model, the decrease in the degree of ionization exceeds 1% at redshifts z = 800–1050, reaching ≈1.3% at z = 900. The corresponding corrections to the calculated cosmic microwave background power spectra reach 1.1% and 1.7% for TT and EE spectra, respectively. The radiative transfer in these calculations was treated in the quasi-stationary approximation.We have also obtained numerical solutions (in the diffusion approximation) to the nonstationary problem of radiative transfer in the Ly-α line for a partial frequency redistribution with recoil. We trace the evolution of the local line profile and the relative number of uncompensated transitions from the 2p state to the 1s state. We show that including the nonstationarity of the Ly-α line radiative transfer can lead to an additional acceleration of the primordial hydrogen recombination.  相似文献   

16.
We present a catalogue of galaxy clusters detected in the Planck all-sky Compton parameter maps and identified using data from the WISE and SDSS surveys. The catalogue comprises about 3000 clusters in the SDSS fields. We expect the completeness of this catalogue to be high for clusters with masses larger than M 500 ≈ 3 × 1014 M , located at redshifts z < 0.7. At redshifts above z ≈ 0.4, the catalogue contains approximately an order of magnitude more clusters than the 2nd Planck Catalogue of Sunyaev-Zeldovich sources in the same fields of the sky. This catalogue can be used for identification of massive galaxy clusters in future large cluster surveys, such as the SRG/eROSITA all-sky X-ray survey.  相似文献   

17.
We calculate the parameters of the two-point correlation function of quasars w(r) = (r c /r) γ on the basis of the SDSS DR3 data. The correlation functions are first determined from projected distances with the use of a special technique for compiling randomized catalogs. Next the parameters of the spatial correlation function are obtained with the assumption of local isotropy. For the quasars with redshifts z = 0.8–2.1, we obtained the estimates γ = 1.76 ± 0.14, r c = 6.60 ± 0.85 h ?1 Mpc in the comoving distance range 2–30 Mpc and γ = 1.90 ± 0.11, r c = 6.95±0.57 h ?1 Mpc in the range 2–50 Mpc. These estimates agree, within the limits of errors, with the estimates obtained for the redshifts 0.4 < z < 2.1. The original catalog shows some deficit of pairs with separations less than 1 Mpc.  相似文献   

18.
Ultrahigh energy cosmic rays (UHECRs, E > 1018 eV) from extragalactic sources deviate in the galactic and intergalactic magnetic fields, which explains the diffusive character of their propagation, the isotropization of their total flux, and the absence of UHECR clusters associated with individual sources. Extremely high energy cosmic rays (E > 1019.7 eV) are scattered mainly in localized magnetized structures, such as galaxy clusters, filaments, etc., with a mean free path of tens of megaparsecs; therefore, in the case of nearby transient sources, a substantial contribution to the observed flux is expected from unscattered and weakly scattered particles, which may be a decisive factor in the identification of these sources. We propose a method for calculating the time evolution of the UHECR energy spectra based on analytical solutions of the transport equation with the explicit determination of the contributions from scattered and unscattered particles. As examples, we consider the cases of transient activity of the nearest active galactic nucleus, Centaurus A, and the acceleration of UHECRs by a young millisecond pulsar.  相似文献   

19.
We developed a generic formalism to estimate the event rate and the redshift distribution of Fast Radio Bursts (FRBs) in our previous publication (Bera et al. 2016), considering FRBs are of an extragalactic origin. In this paper, we present (a) the predicted pulse widths of FRBs by considering two different scattering models, (b) the minimum total energy required to detect events, (c) the redshift distribution and (d) the detection rates of FRBs for the Ooty Wide Field Array (OWFA). The energy spectrum of FRBs is modelled as a power law with an exponent ?α and our analysis spans a range ?3≤α≤5. We find that OWFA will be capable of detecting FRBs with α≥0. The redshift distribution and the event rates of FRBs are estimated by assuming two different energy distribution functions; a Delta function and a Schechter luminosity function with an exponent ?2≤γ≤2. We consider an empirical scattering model based on pulsar observations (model I) as well as a theoretical model (model II) expected for the intergalactic medium. The redshift distributions peak at a particular redshift z p for a fixed value of α, which lie in the range 0.3≤z p ≤1 for the scattering model I and remain flat and extend up to high redshifts (z?5) for the scattering model II.  相似文献   

20.
The X-ray luminosity function of distant (3 < z < 5.1) type 1 quasars has been measured. A sample of distant high-luminosity (1045 erg s?1LX,2?10 < 7.5×1045 erg s?1 in the 2–10 keV energy band) quasars from the catalog by Khorunzhev et al. (2016) compiled from the data of the 3XMM-DR4 catalog of the XMM-Newton serendipitous survey and the Sloan Digital Sky Survey (SDSS) has been used. This sample consists of 101 sources. Most of them (90) have spectroscopic redshifts zspec ? 3; the remaining ones are quasar candidates with photometric redshift estimates zphot ? 3. The spectroscopic redshifts of eight sources have been measured with the BTA and AZT-33IK telescopes. Owing to the record sky coverage area (?250 sq. deg at X-ray fluxes ~10?14 erg s?1 cm?2 in the 0.5–2 keVband) from which the sample was drawn, we have managed to obtain reliable estimates of the space density of distant X-ray quasars with luminosities LX,2?10 > 2×1045 erg s?1 for the first time. Their comoving space density remains constant as the redshift increases from z = 3 to 5 to within a factor of 2. The power-law slope of the X-ray luminosity function of distant quasars at its bright end (above the break) has been reliably constrained for the first time. The range of possible slopes for the quasar luminosity and density evolution model is γ2 = 2.72 ?0.12 +0.19 ± 0.21, where initially the lower and upper boundaries of γ2 with the remaining uncertainty in the detection completeness of X-ray sources in SDSS and subsequently the statistical error of the slope are specified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号