首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The dominance of dark energy in the universe has necessitated the introduction of a repulsive gravity source to make q0 negative. The models for dark energy range from a simple Λ term to quintessence, Chaplygin gas, etc. We look at the possibility of how change of behaviour of missing energy density, from DM to DE, may be determined by the change in the equation of state of a background fluid instead of a form of potential. The question of cosmic acceleration can be discussed within the framework of theories which do not necessarily include scalar fields.  相似文献   

2.
This paper is an extension of the work done by Pierens & Nelson in which they investigated the behaviour of a two-planet system embedded in a protoplanetary disc. They put a Jupiter mass gas giant on the internal orbit and a lower mass planet on the external one. We consider here a similar problem taking into account a gas giant with mass in the range 0.5 to  1 M J  and a Super-Earth (i.e. a planet with mass  ≤10 M   ) as the outermost planet. By changing disc parameters and planet masses, we have succeeded in getting the convergent migration of the planets which allows for the possibility of their resonant locking. However, in the case in which the gas giant has the mass of Jupiter, before any mean-motion first-order commensurability could be achieved, the Super-Earth is caught in a trap when it is very close to the edge of the gap opened by the giant planet. This confirms the result obtained by Pierens & Nelson in their simulations. Additionally, we have found that, in a very thin disc, an apsidal resonance is observed in the system if the Super-Earth is captured in the trap. Moreover, the eccentricity of the small planet remains low, while the eccentricity of the gas giant increases slightly due to the imbalance between Lindblad and corotational resonances. We have also extended the work of Pierens & Nelson by studying analogous systems in which the gas giant is allowed to take sub-Jupiter masses. In this case, after conducting an extensive survey over all possible parameters, we have succeeded in getting the 1:2 mean-motion resonant configuration only in a disc with low aspect ratio and low surface density. However, the resonance is maintained just for a few thousand orbits. Thus, we conclude that for typical protoplanetary discs the mean-motion commensurabilities are rare if the Super-Earth is located on the external orbit relative to the gas giant.  相似文献   

3.
We study modified Chaplygin gas (MCG) as a candidate for dark energy and predict the values of parameters of the gas for a physically viable cosmological model. The equation of state of MCG     involves three parameters: B , A and α. The permitted values of these parameters are determined with the help of a dimensionless age parameter  ( H 0 t 0)  and   H ( z ) − z   data. Specifically, we study the allowed ranges of values of the B parameter in terms of α and   As   (   As   is defined in terms of the parameters in the theory). We explore the constraints of the parameters in the cold dark matter and unified dark matter energy models, respectively.  相似文献   

4.
5.
6.
A model of the gravitationally evolved dark matter distribution, in the Eulerian space, is developed. It is a simple extension of the excursion set model that is commonly used to estimate the mass function of collapsed dark matter haloes. In addition to describing the evolution of the Eulerian space distribution of the haloes, the model allows one to describe the evolution of the dark matter itself. It can also be used to describe density profiles, on scales larger than the virial radius of these haloes, and to quantify the way in which matter flows in and out of Eulerian cells. When the initial Lagrangian space distribution is white noise Gaussian, the model suggests that the Inverse Gaussian distribution should provide a reasonably good approximation to the evolved Eulerian density field, in agreement with numerical simulations. Application of this model to clustering from more general Gaussian initial conditions is discussed at the end.  相似文献   

7.
We consider a generalization of the Standard Model whose action displays conformal invariance in d dimensions. The model contains a strongly coupled dark matter sector which breaks conformal symmetry dynamically. The model evades conformal anomaly and leads to identically zero vacuum energy in flat space-time. Hence it does not suffer from the problem of fine tuning of the cosmological constant. We determine the contribution of non-relativistic matter to the energy-momentum tensor and determine a parameter regime in which it approximately reduces to the standard result. We show how dark energy and dark matter arises in this model. We discuss the parameter range for which the model reduces to the ΛCDM model and hence is consistent with observations.  相似文献   

8.
9.
In the absence of the physical understanding of the phenomenon, different empirical laws have been used as approximation for distribution of dark matter in galaxies and clusters of galaxies. We suggest a new profile which is not empirical in nature, but motivated with the physical idea that what we call dark matter is essentially the gravitational polarization of the quantum vacuum (containing virtual gravitational dipoles) by the immersed baryonic matter. It is very important to include this new profile in forthcoming studies of dark matter halos and to reveal how well it performs in comparison with empirical profiles. A good agreement of the profile with observational findings would be the first sign of unexpected gravitational properties of the quantum vacuum.  相似文献   

10.
11.
Drexler dark matter is an alternate approach to dark matter that assumes that highly relativistic protons trapped in the halo of the galaxies could account for the missing mass. We look at various energetics involved in such a scenario such as the energy required to produce such particles and the corresponding lifetimes. Also we look at the energy losses from synchrotron and inverse Compton scattering and their signatures. The Coulomb repulsive instability due to the excess charge around the galaxies is also calculated. The above results lead us to conclude that such a model for DM is unfeasible.  相似文献   

12.
Astrophysical limits on massive dark matter   总被引:1,自引:0,他引:1  
Annihilations of weakly interacting dark matter particles provide an important signature for the possibility of indirect detection of dark matter in galaxy haloes. These self-annihilations can be greatly enhanced in the vicinity of a massive black hole. We show that the massive black hole present at the centre of our galaxy accretes dark matter particles, creating a region of very high particle density. Consequently the annihilation rate is considerably increased, with a large number of e+e pairs being produced either directly or by successive decays of mesons. We evaluate the synchrotron emission (and self-absorption) associated with the propagation of these particles through the galactic magnetic field, and are able to constrain the allowed values of masses and cross sections of dark matter particles.  相似文献   

13.
Dark matter is obtained from a scalar field coupled conformally to gravitation, the scalar being a relict of Dirac's gauge function. This conformally coupled dark matter includes a gas of very light (m 2.25 × 10–34 eV) neutral bosons having spin 0, as well as a time-dependent global scalar field, both pervading all of the cosmic space. The time-development of this dark matter in the expanding F-R-W universe is investigated, and an acceptable cosmological behaviour is obtained.  相似文献   

14.
15.
I propose a modification of the spherical infall model for the evolution of density fluctuations with initially Gaussian probability distribution and scale-free power spectra in the Einsteinde Sitter universe as developed by Hoffman & Shaham. I introduce a generalized form of the initial density distribution around an overdense region and cut it off at half the interpeak separation, accounting in this way for the presence of the neighbouring fluctuations. Contrary to the original predictions of Hoffman & Shaham, the resulting density profiles within virial radii no longer have a power-law shape, but their steepness increases with distance. The profiles of haloes of galactic mass are well fitted by the universal profile formula of changing slope obtained as a result of N -body simulations by Navarro, Frenk & White. The trend of steeper profiles for smaller masses and higher spectral indices is also reproduced. The agreement between the model and simulations is better for smaller masses and lower spectral indices, which suggests that galaxies form mainly by accretion, while formation of clusters involves merging.  相似文献   

16.
17.
If dark haloes are composed of dense gas clouds, as has recently been inferred, then collisions between clouds lead to galaxy evolution. Collisions introduce a core in an initially singular dark matter distribution, and can thus help to reconcile scale-free initial conditions – such as are found in simulations – with observed haloes, which have cores. A pseudo-Tully–Fisher relation, between halo circular speed and visible mass (not luminosity), emerges naturally from the model: M vis∝ V 7/2.
Published data conform astonishingly well to this theoretical prediction. For our sample of galaxies, the mass–velocity relationship has much less scatter than the Tully–Fisher relation, and holds as well for dwarf galaxies (where diffuse gas makes a sizeable contribution to the total visible mass) as it does for giants. It seems very likely that this visible-mass/velocity relationship is the underlying physical basis for the Tully–Fisher relation, and this discovery in turn suggests that the dark matter is both baryonic and collisional.  相似文献   

18.
Recently, the gravitational polarization of the quantum vacuum was proposed as alternative to the dark matter paradigm. In the present paper we consider four benchmark measurements: the universality of the central surface density of galaxy dark matter haloes, the cored dark matter haloes in dwarf spheroidal galaxies, the non-existence of dark disks in spiral galaxies and distribution of dark matter after collision of clusters of galaxies (the Bullet cluster is a famous example). Only some of these phenomena (but not all of them) can (in principle) be explained by the dark matter and the theories of modified gravity. However, we argue that the framework of the gravitational polarization of the quantum vacuum allows the understanding of the totality of these phenomena.  相似文献   

19.
Using eight dark matter haloes extracted from fully self-consistent cosmological N -body simulations, we perform microlensing experiments. A hypothetical observer is placed at a distance of 8.5 kpc from the centre of the halo measuring optical depths, event durations and event rates towards the direction of the Large Magellanic Cloud. We simulate 1600 microlensing experiments for each halo. Assuming that the whole halo consists of massive astronomical compact halo objects (MACHOs),   f = 1.0  , and a single MACHO mass is   m M= 1.0 M  , the simulations yield mean values of  τ= 4.7+5.0−2.2× 10−7  and  Γ= 1.6+1.3−0.6× 10−6  events star−1 yr−1. We find that triaxiality and substructure can have major effects on the measured values so that τ and Γ values of up to three times the mean can be found. If we fit our values of τ and Γ to the MACHO collaboration observations, we find   f = 0.23+0.15−0.13  and   m M= 0.44+0.24−0.16  . Five out of the eight haloes under investigation produce f and m M values mainly concentrated within these bounds.  相似文献   

20.
The dynamical mass of clusters of galaxies, calculated in terms of MOdified Newtonian Dynamics (MOND), is a factor of 2 or 3 times smaller than the Newtonian dynamical mass but remains significantly larger than the observed baryonic mass in the form of hot gas and stars in galaxies. Here I consider further the suggestion that the undetected matter might be in the form of cosmological neutrinos with mass of the order of 2 eV. If the neutrinos and baryons have comparable velocity dispersions and if the two components maintain their cosmological density ratio, then the electron density in the cores of clusters should be proportional to T 3/2, as appears to be true in non-cooling flow clusters. This is equivalent to the 'entropy floor' proposed to explain the steepness of the observed luminosity–temperature relation, but here preheating of the medium is not required. Two-fluid (neutrino–baryon) hydrostatic models of clusters, in the context of MOND, reproduce the observed luminosity–temperature relation of clusters. If the β law is imposed on the gas density distribution, then the self-consistent models predict the general form of the observed temperature profile in both cooling and non-cooling flow clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号