首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A sulfur budget for the Black Sea anoxic zone   总被引:1,自引:0,他引:1  
A budget for the sulfur cycle in the Black Sea is proposed which incorporates specific biogeochemical process rates. The average sulfide production in the water column is estimated to be 30–50 Tg yr−1, occurring essentially in the layer between 500 and 2000 m. About 3.2–5.2 Tg sulfide yr−1 form during sulfate reduction in surface sediments of the anoxic zone. Total sulfur burial in anoxic sediments of 1 Tg yr−1 consists of 10–70% (ca. 40–50% is the average) water column formed (syngenetic) component, the rest being diagenetic pyrite. As a maximum, between 3 and 5 Tg yr−1 contribute sulfide to the bottom water or diffuse downward in the sediment. About 20–50 Tg yr−1 sulfide is oxidized mostly at the chemocline and about 10–20% of this amount (4.4–9.2 Tg yr−1) below the chemocline by the oxygen of the Lower Bosphorus Current. A model simulating the vertical distribution of sulfide in the Black Sea water column shows net consumption in the upper layers down to ca. 500 m, essentially due to oxidation at the chemocline, and net production down to the bottom. On the basis of the calculated budget anoxic conditions in the Black Sea are sustained by the balance between sulfide production in the anoxic water column and oxidation at the chemocline. On average the residence time of sulfide in the anoxic zone is about 90–150 yr, comparable to the water exchange time between oxic and anoxic zones. Hydrophysical control on the sulfur cycle appears to be the main factor regulating the extent of anoxic conditions in the Black Sea water column, rather than rates of biogeochemical processes.  相似文献   

2.
Geomorphic, stratigraphic, and faunal observations of submarine slide scars that occur along the flanks of Monterey Canyon in 2.0–2.5 km water depths were made to identify the processes that continue to alter the surface of a submarine landslide scar after the initial slope failure. Deep-sea chemosynthetic biological communities and small caves are common on the sediment-free surfaces of the slide scars, especially along the headwall. The chemosynthetic organisms observed on slide scars in Monterey Canyon undergo a faunal succession based in part on their ability to maintain their access to the redox boundaries in the sediment on which they depend on as an energy source. By burrowing into the seafloor, these organisms are able to follow the retreating redox boundaries as geochemical re-equilibration occurs on the sole of the slide. As these organisms dig into the seafloor on the footwall, they often generate small caves and weaken the remaining seafloor. While chemosynthetic biological communities are typically used as indicators of fluid flow, these communities may be supported by methane and hydrogen sulfide that are diffusing out of the fresh seafloor exposed at the sole of the slide by the slope failure event. If so, these chemosynthetic biological communities may simply mark sites of recent seafloor exhumation, and are not reliable fluid seepage indicators.  相似文献   

3.
Multi-scale reflection seismic data, from deep-penetration to high-resolution, have been analyzed and integrated with near-surface geophysical and geochemical data to investigate the structures and gas hydrate system of the Formosa Ridge offshore of southwestern Taiwan. In 2007, dense and large chemosynthetic communities were discovered on top of the Formosa Ridge at water depth of 1125 m by the ROV Hyper-Dolphin. A continuous and strong BSR has been observed on seismic profiles from 300 to 500 ms two-way-travel-time below the seafloor of this ridge. Sedimentary strata of the Formosa Ridge are generally flat lying which suggests that this ridge was formed by submarine erosion processes of down-slope canyon development. In addition, some sediment waves and mass wasting features are present on the ridge. Beneath the cold seep site, a vertical blanking zone, or seismic chimney, is clearly observed on seismic profiles, and it is interpreted to be a fluid conduit. A thick low velocity zone beneath BSR suggests the presence of a gas reservoir there. This “gas reservoir” is shallower than the surrounding canyon floors along the ridge; therefore as warm methane-rich fluids inside the ridge migrate upward, sulfate carried by cold sea water can flow into the fluid system from both flanks of the ridge. This process may drive a fluid circulation system and the active cold seep site which emits both hydrogen sulfide and methane to feed the chemosynthetic communities.  相似文献   

4.
The northern slope of the South China Sea is a gas-hydrate-bearing region related to a high deposition rate of organic-rich sediments co-occurring with intense methanogenesis in subseafloor environments.Anaerobic oxidation of methane(AOM) coupled with bacterial sulfate reduction results in the precipitation of solid phase minerals in seepage sediment,including pyrite and gypsum.Abundant aggregates of pyrites and gypsums are observed between the depth of 667 and 850 cm below the seafloor(cmbsf) in the entire core sediment of HS328 from the northern South China Sea.Most pyrites are tubes consisting of framboidal cores and outer crusts.Gypsum aggregates occur as rosettes and spheroids consisting of plates.Some of them grow over pyrite,indicating that gypsum precipitation postdates pyrite formation.The sulfur isotopic values(δ~(34) S) of pyrite vary greatly(from –46.6‰ to –12.3‰ V-CDT) and increase with depth.Thus,the pyrite in the shallow sediments resulted from organoclastic sulfate reduction(OSR) and is influenced by AOM with depth.The relative high abundance and δ~(34) S values of pyrite in sediments at depths from 580 to 810 cmbsf indicate that this interval is the location of a paleo-sulfate methane transition zone(SMTZ).The sulfur isotopic composition of gypsum(from–25‰ to –20.7‰) is much lower than that of the seawater sulfate,indicating the existence of a 34 S-depletion source of sulfur species that most likely are products of the oxidation of pyrites formed in OSR.Pyrite oxidation is controlled by ambient electron acceptors such as MnO_2,iron(Ⅲ) and oxygen driven by the SMTZ location shift to great depths.The δ~(34) S values of gypsum at greater depth are lower than those of the associated pyrite,revealing downward diffusion of 34 S-depleted sulfate from the mixture of oxidation of pyrite derived by OSR and the seawater sulfate.These sulfates also lead to an increase of calcium ions from the dissolution of calcium carbonate mineral,which will be favor to the formation of gypsum.Overall,the mineralogy and sulfur isotopic composition of the pyrite and gypsum suggest variable redox conditions caused by reduced seepage intensities,and the pyrite and gypsum can be a recorder of the intensity evolution of methane seepage.  相似文献   

5.
Two mud volcano fields were explored during the French–Dutch MEDINAUT cruise (1998) with the submersible NAUTILE, one south of Crete along the Mediteranean Ridge at about 2000 m depth (Olimpi mud field) and the other south of Turkey between 1700 and 2000 m depth (Anaximander mud field) where high methane concentrations were measured. Chemosynthetic communities were observed and sampled on six mud volcanoes and along a fault scarp. The communities were dominated by bivalves of particularly small size, belonging to families commonly found at seeps (Mytilidae, Vesicomyidae, Thyasiridae) and to Lucinidae mostly encountered in littoral sulfide-rich sediments and at the shallowest seeps. Siboglinid polychaetes including a large vestimentiferan Lamellibrachia sp. were also associated. At least four bivalve species and one siboglinid are associated with symbiotic chemoautotrophic bacteria, as evidenced by Transmission Electronic Microscopy and isotopic ratio measurements. Among the bivalves, a mytilid harbors both methanotrophic and sulfide-oxidizing bacteria. Video spatial analysis of the community distribution on three volcanoes shows that dense bivalve shell accumulations (mainly lucinids) spread over large areas, from 10% to 38% of the explored areas (2500–15000 m2) on the different volcanoes. Lamellibrachia sp. had different spatial distribution and variable density in the two mud volcano fields, apparently related with higher methane fluxes in the Anaximander volcanoes and maybe with the instability due to brines in the Olimpi area. The abundance and richness of the observed chemosynthetic fauna and the size of some of the species contrast with the poverty of the deep eastern Mediterranean. The presence of a specialized fauna, with some mollusk genera and species shared with other reduced environments of the Mediterranean, but not dominated by the large bivalves usually found at seeps, is discussed.  相似文献   

6.
A whale skeleton was discovered on the flat-topped summit of the Torishima Seamount, 4037 m deep, northwest Pacific Ocean, during a dive by the submersibleShinkai 6500 in 1992. The skeleton was encrusted with mytilid mussels and harbored benthic animals such as galatheid crabs, echinoderms, sea anemones, and unidentifiable tube worms. The whale skeleton was revisited in 1993. Sediment samples were collected to outline the chemical-microbial distribution in the sediment associated with the skeleton. In the sediment, there was a gradient of sulfide concentration with the peak of 20 n moles per gram sediment just beneath a bone. Corresponding gradients were observed in thiosulfate-oxidizing enzyme activity, bacterial colony counts and fatty acid amounts. Direct analysis of the sediment fatty acid composition suggested the occurrence of methane-oxidizing bacteria and sulfur-reducing bacteria in close association with the whale skeleton. These observations imply that the methane and sulfides were formed during the saprogenic process and utilized for the chemosynthetic bacterial production to feed the whale skeleton-animal community.  相似文献   

7.
The stable isotope ratio of sulfur (34S/32S) in dissolved sulfate and hydrogen sulfide was measured for 20 water samples from two deep hydrocasts from the south-central Black Sea. The isotope ratio of total reduced sulfur was also measured for surface sediment collected below each hydrocast. The range in the δ34S measurements for sulfate was +18.20 to +20.17‰ and for hydrogen sulfide ?38.71 to ?4.85‰. The distribution pattern for δ 34S in both sulfate and sulfide appears to be the result of in situ sulfate reduction.  相似文献   

8.
Free gases from fumaroles of the Tavurvur and Rabalanakaia volcanoes are liberated as bubbles from the seafloor of Matupit Bay. The free gases contain methane (as high as 0.02%), heavy hydrocarbons (0.00001–0.0004%), carbon dioxide (more than 90%), and hydrogen sulfide (up to 27.9%). Background levels of dissolved methane are 30–50 nl/liter; they become seven times higher in the area of sea-floor uplift in the bay, and 10–20 times higher in the hot-water lateral zone. The hydrogen concentration is as high as 100–300 nl/liter. Average content of carbon dioxide is 0.16–0.36 ml/liter and increases up to 5.5 ml/liter in the gasbubbling area.  相似文献   

9.
Stable carbon isotope values of authigenic carbonate rocks in the Miocene terrigenous sediments of Piedmont indicate a methane-related origin. Some of these methane-derived carbonates (Lucina limestone) are characterized by the presence of abundant lucinid remains. Carbonate dissolution/precipitation and development of lucinid communities were related to bacterial methane oxidation, both aerobic and anaerobic. Anaerobic oxidation led to carbonate precipitation and production of sulfide, which sustained lucinid communities through chemosynthetic symbiotic bacteria. Aerobic oxidation of methane likely resulted in dissolution of carbonate skeletal grains. Several phases of carbonate precipitation, characterized by slightly different isotopic compositions, are recognizable in the limestones.  相似文献   

10.
程俊  王淑红  黄怡  颜文 《海洋科学》2019,43(5):110-122
综述了天然气水合物赋存区甲烷渗漏活动的地球化学响应指标的研究进展,分析了应用单一指标识别甲烷渗漏活动各自所存在的问题,包括浅表层沉积物孔隙水中CH_4、SO_4~(2–)、Cl~–等离子浓度随深度的变化;浅层沉积物全岩W_(TOC)(W表示质量分数,TOC表示总有机碳)和W_(TS)(TS表示总硫)之间的相关性及比值;自生碳酸盐岩δ~(13)C和δ~(18)O;自生矿物重晶石、黄铁矿、自生石膏的δ~(34)S;有孔虫壳体和生物标志化合物的δ~(13)C等。结果表明孔隙水中的CH_4、SO4_~(2–)浓度及溶解无机碳的碳同位素组成可以用来识别目前正在发生的甲烷渗漏活动;而沉积物中的WTS、自生矿物的δ~(34)S、钡含量及其异常峰值和生物标志化合物的δ~(13)C等指标的联合使用可以更真实准确地反映地质历史时期天然气水合物赋存区的甲烷渗漏活动。因此,在实际研究过程中,可将孔隙水和沉积物两种介质的多种指标相结合。随着非传统稳定同位素(Fe、Ca、Mg等)和沉积物氧化还原敏感元素(Mo、V、U等)等研究的发展,甲烷渗漏活动地球化学响应指标的研究也将得到拓展,而多种地球化学指标的联合使用将为天然气水合物勘探及其形成分解过程识别研究提供重要的科学依据。  相似文献   

11.
The analogy between desert oasis and deep-sea chemosynthetic community arose from the biomass contrast between vents and the relatively depauperate background benthic fauna. Fully developed, the analogy helps pose questions about interactions with the background fauna with respect to resources, colonization, and persistence. The chemosynthetic sites of the Gulf of Mexico provide an opportunity to consider possible interactions between vent and nonvent fauna over a 3000-m depth range. It is postulated that deep chemosynthetic communities require the operation of geochemical transporting and concentrating processes to overcome low levels of in situ methane and sulfide production. Clathrate reservoirs may serve these functions. A few chemosynthetic species at the Gulf of Mexico upper slope sites are related to shallow-water sulfide species, but it can be speculated that the dominant chemosynthetic fauna may have originated in a wide spread deep sulfide biome of the Cretaceous. Generic endemism of consumers is low in Gulf of Mexico sites, suggesting a high level of colonization from the surrounding benthos. Chemosynthetic communities may avoid excessive colonization by predators in spite of the apparent food limitation of the surrounding benthos due to toxicity or an evolutionary mechanism selecting against specialized predators. The abundance of large predators is related to the composition of the surrounding benthos and is high at the Gulf of Mexico upper slope sites. Exclusion of chemosyntheic communities from shallower depths may be due to excessive predation by generalists.  相似文献   

12.
This study presents first-time observations of bacterial and viral abundances in hydrothermal event plumes. Two water-column event plumes were formed in conjunction with seismic events and seafloor volcanic eruptions on the northern Gorda Ridge in February–March 1996. Epifluorescence counts of bacteria and viruses were performed on water samples from 3 successive cruises staged in the 10–90 days that followed the onset of seismicity. Relative to background seawater at these 1800–3200 m depths, bacterial abundance was enhanced by 2–3 fold within both event plumes. In contrast, viral numbers were below background seawater values in the younger and more intense of the two event plumes (EP96A), and enhanced in the other (EP96B). Changes in viral abundance may be a secondary response to that of plume bacteria as well as being influenced by particle formation and precipitation within the plumes. Lower bacteria/heat, virus/heat and virus/bacteria ratios in EP96A versus EP96B confirm distinct differences in the microbial response to event plume formation, possibly related to observed differences in plume chemistry.  相似文献   

13.
The rate of the hydrogen sulfide oxidation in the redox zone of the Black Sea and the rate of the hydrogen sulfide formation due to bacterial sulfate reduction in the upper layer of the anaerobic waters were measured during the period of February–April 1991. The measurements were made using a sulfur radioisotope under conditions close to those in situ. It was established that the hydrogen sulfide is oxidized in the layer where oxygen and hydrogen sulfide coexist, which is under the upper boundary of the hydrogen sulfide layer. The maximum rate of the hydrogen sulfide oxidation was recorded within the limits of the density values δτ of 16.20–16.30, while varying in the layer from 2 to 4.5 μM/day. The average rate of the hydrogen sulfide oxidation was 1.5–3 times higher than that during the warm season. Sulfide formation was not observed at most of the stations in the examined lower portion of the pycnocline layer (140 to 400 m depths). Noticeable sulfate reduction was detected only at one station on the northwestern shelf. A probable reason for such noticeable changes in the sulfur dynamics in the water mass of the Black Sea may be the intensified hydrodynamics in the upper layers of the water mass during the cold season. The data suggesting that hydrogen sulfide oxidation proceeds under the hydrogen sulfide boundary indicate the absence of the so called “suboxic zone” in this basin.  相似文献   

14.
Framvaren, a super-anoxic fjord in southern Norway, contains 7–8 mmoll−1 of sulphide and a total carbonate concentration of 18.5 mmol kg−1 in the bottom water. The chemistry of calcium has been studied, considering sources, biogenic and chemical processes and sedimentary sinks. Calcium associated with the bacteria biomass at the redox interface (18m depth) appears to be the primary source of dissolved calcium in the deep, anoxic water. Excess calcium and high total carbonate cause supersaturation of calcite, which is precipitated chemogenically. Calcite (and presumably some aragonite) is identified both in sediment trap material and the bottom sediments below the depth of supersaturation.  相似文献   

15.
Hidden for the untrained eye through a thin layer of sand, laminated microbial sediments occur in supratidal beaches along the North Sea coast. The inhabiting microbial communities organize themselves in response to vertical gradients of light, oxygen or sulfur compounds. We performed a fine-scale investigation on the vertical zonation of the microbial communities using a lipid biomarker approach, and assessed the biogeochemical processes using a combination of microsensor measurements and a 13C-labeling experiment. Lipid biomarker fingerprinting showed the overarching importance of cyanobacteria and diatoms in these systems, and heterocyst glycolipids revealed the presence of diazotrophic cyanobacteria even in 9 to 20 mm depth. High abundance of ornithine lipids (OL) throughout the system may derive from sulfate reducing bacteria, while a characteristic OL profile between 5 and 8 mm may indicate presence of purple non-sulfur bacteria. The fate of 13C-labeled bicarbonate was followed by experimentally investigating the uptake into microbial lipids, revealing an overarching importance of cyanobacteria for carbon fixation. However, in deeper layers, uptake into purple sulfur bacteria was evident, and a close microbial coupling could be shown by uptake of label into lipids of sulfate reducing bacteria in the deepest layer. Microsensor measurements in sediment cores collected at a later time point revealed the same general pattern as the biomarker analysis and the labeling experiments. Oxygen and pH-microsensor profiles showed active photosynthesis in the top layer. The sulfide that diffuses from deeper down and decreases just below the layer of active oxygenic photosynthesis indicates the presence of sulfur bacteria, like anoxygenic phototrophs that use sulfide instead of water for photosynthesis.  相似文献   

16.
Authigenic carbonates from outcrops of the northern Apennines consist of small and irregular lenses and exhibit numerous features indicative of cold-seep settings. Detailed petrographic, mineralogical and geochemical studies from two Miocene deposits are presented. The first carbonate outcrop, named Fosso Riconi, is located in the foredeep basin of the Apenninic chain, whereas the second deposit represents a satellite basin called Sarsetta. The stable isotope data from specific carbonate minerals show a wide range of values well known from other palaeoseeps of the Apennine Mountains. The majority of seep carbonates are formed by low-Mg calcite and ankerite. Those minerals have δ13C values between ?7 and ?23‰ V-PDB, suggesting variable amounts of carbonate derived from oxidized methane, seawater (dissolved inorganic carbon) and sedimentary organic matter. Dolomite samples have the lowest δ13C values (?30.8 to ?39.0‰ V-PDB), indicating methane as the main carbon source. The findings suggest an evolutionary formation of the seeps and development of authigenic carbonates influenced by the activity of chemosynthetic organisms, of which large lucinid clams are preserved. Bioirrigation by the clams controlled the sediment–water exchange, and is here considered as an explanation for the anomalous Mg content of the calcite. We hypothesize that the seep carbonates were formed during periods of active methane-rich seepage, whereas during periods of slow seepage carbonate formation was reduced. Despite different geological settings, the two examined deposits of Sarsetta and Fosso Riconi show similar features, suggesting that a common pattern of fluid circulation played a major role in carbonate formation at both seep sites.  相似文献   

17.
The speciation of sedimentary sulfur (pyrite, acid volatile sulfides (AVS), S0, H2S, and sulfate) was analyzed in surface sediments recovered at different water depths from the northwestern margin of the Black Sea. Additionally, dissolved and dithionite-extractable iron were quantified, and the sulfur isotope ratios in pyrite were measured. Sulfur and iron cycling in surface sediments of the northwestern part of the Black Sea is largely influenced by (1) organic matter supply to the sediment, (2) availability of reactive iron compounds and (3) oxygen concentrations in the bottom waters. Biologically active, accumulating sediments just in front of the river deltas were characterized by high AVS contents and a fast depletion of sulfate concentration with depth, most likely due to high sulfate reduction rates (SRR). The δ34S values of pyrite in these sediments were relatively heavy (−8‰ to −21‰ vs. V-CDT). On the central shelf, where benthic mineralization rates are lower, re-oxidation processes may become more important and result in pyrite extremely depleted in δ34S (−39‰ to −46‰ vs. V-CDT). A high variability in δ34S values of pyrite in sediments from the shelf-edge (−6‰ to −46‰ vs. V-CDT) reflects characteristic fluctuations in the oxygen concentrations of bottom waters or varying sediment accumulation rates. During periods of oxic conditions or low sediment accumulation rates, re-oxidation processes became important resulting in low AVS concentrations and light δ34S values. Anoxic conditions in the bottom waters overlying shelf-edge sediments or periods of high accumulation rates are reflected in enhanced AVS contents and heavier sulfur isotope values. The sulfur and iron contents and the light and uniform pyrite isotopic composition (−37‰ to −39‰ vs. V-CDT) of sediments in the permanently anoxic deep sea (1494 m water depth) reflect the formation of pyrite in the upper part of the sulfidic water column and the anoxic surface sediment. The present study demonstrates that pyrite, which is extremely depleted in 34S, can be found in the Black Sea surface sediments that are positioned both above and below the chemocline, despite differences in biogeochemical and microbial controlling factors.  相似文献   

18.
The influence of bioturbation on certain aspects of the biogeochemistry of sulfur and iron was examined in shallow-water sediments of Great Bay Estuary, New Hampshire. A bioturbated (JEL) and non-bioturbated (SQUAM) site were compared. Annual sulfate reduction measured with 35S, was 4·5 times more rapid at JEL. A significant portion of this difference was attributed to rapid rates which occurred throughout the upper 12 cm of sediment at JEL due to infaunal reworking activities. Sulfate reduction decreased rapidly with depth at SQUAM. FeS in the upper 2 cm at JEL increased in concentration from 3 to 45 μmol ml−1 from early May to late July while only increasing from 3 to 8 μmol ml−1 at SQUAM. Infaunal irrigation and reworking activities caused rapid and continous subsurface cycling of iron and sulfur at JEL. This maintained dissolved iron concentrations at 160–170 μM throughout the summer despite rapid sulfide production. Therefore, dissolved sulfide never accumulated in JEL pore waters. Although dissolved organic carbon (DOC) was generated during sulfate reduction, bioturbation during summer caused a net removal of DOC from JEL pore waters. Sulfate reduction rates, decomposition stoichiometry and nutrient concentrations were used to calculate turnover times of nutrients in pore waters. Nutrient turnover varied temporally and increased three-to five-fold during bioturbation. A secondary maximum in the abundance of recoverable sulfate-reducing bacteria occurred at 10 cm in JEL sediments only during periods of active bioturbation, demonstrating the influence of macrofaunal activities on bacterial distributions.  相似文献   

19.
We have sampled particles of native aluminium (Al°) in two sediment cores from the Central Indian Basin (CIB). The cores are geographically separated but are located at the base of two seamounts. The native Al° particles occurring as grains and spherules, have an average Al content of  95% and are associated with volcanogenic–hydrothermal material. Morphologically and compositionally, the specimens are similar to those reported from the East Pacific Rise. After ruling out several processes for the presence of the native Al°, we hypothesize that during progressive melting of magma, a basaltic magma is produced which has high contents of reductants such as methane and hydrogen, and a low oxygen fugacity. During the upward migration of such magma, reduction to metallic aluminium and the formation of native Al° particles takes place.  相似文献   

20.
Hydrocarbon-derived and microbially mediated authigenic carbonates occur over the entire depth range of the northern Gulf of Mexico slope. These carbonates consist of nodules and incipient nodules in surface sediments, hardgrounds and isolated slabs, and moundlike buildups of up to 10–20 m relief above the surrounding seafloor. The authigenic carbonates are characterized by 13C negative values in the range –18 to –55 (PDB) suggesting mixing of seawater carbon with13C-depleted carbon sources ranging from crude oil to biogenic methane. Near the shelf edge, carbonates are diluted with biogenic material produced by reefs—bioherms developed at low sea level stands. Fossil-poor carbonates over salt diapirs of the upper and middle slope formed in the shallow subsurface and have been exhumed by the combined processes of uplift and physical erosion. Middle and lower slope carbonates are generally rich in fossil shells of chemosynthetic organisms. Mg calcite pelloidal matrix and acicular to botryoidal aragonitic void-filling cements are common petrographic features of these hydrocarbonderived carbonates. At two sites carbonates are mixed with barite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号