首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this provenance study of late Palaeozoic metasediments of the Eastern Andean Metamorphic Complex (EAMC) along the south Patagonian proto-Pacific margin of Gondwana, the palaeogeological setting of the continental margin in Devonian–Carboniferous and Permian times is reconstructed. The study is based on detrital heavy mineral contents, chemical compositions of tourmaline grains, and whole rock element and Nd-Sr isotopic compositions. Element and isotopic compositions reveal that Devonian–Carboniferous metaturbidites deposited before the development of a Late Carboniferous–Permian magmatic arc along the margin were mainly fed from felsic, recycled, old continental rocks. The last recycling phase involved erosion of metasediments that were exposed in Patagonia. Feeder systems to the basin cut either through epidote-rich or garnet-rich metasediments. In Permian time, EAMC metaturbidites were deposited next to the evolving magmatic arc and were derived from felsic, crustal rocks. Two provenance domains are recognised. The metasediments of the northern one are chemically similar to those of the Devonian–Carboniferous metasediments. This domain was fed from the metasedimentary host rocks of the magmatic arc. The southern domain probably was fed from the arc proper, as indicated mainly by the dominance of metaplutonic lithic fragments, abundant detrital biotite, and the major element composition of the metasediments.  相似文献   

2.
The Trans-European Suture Zone (TESZ) is the most fundamental lithospheric boundary in Europe, separating the ancient crust of the Fennoscandian Shield–East European Craton from the younger crust of central Europe, and extending deep into the mantle. Geophysical potential field images provide an overview of the entire Palaeozoic orogenic system of northern and central Europe for the first time. The TESZ is largely concealed by sedimentary basins of Permian–Cenozoic age; geological observations are largely restricted to local basement highs and deep boreholes, and the coverage of deep seismic surveys is widely spaced, despite experiments recently acquired within the EUROPROBE programme. By contrast, the potential field data offer a relatively detailed coverage of standardised observations throughout the TESZ. While some features of the images may be sourced in the near surface, particularly in the gravity image, much of their content reflects the structure of the underlying Palaeozoic basement. At the scale presented, the images highlight the most fundamental features of the crustal structure of the TESZ. These include the strong contrast between the highly magnetic crust of the East European Craton and the less magnetic Palaeozoic-accreted terranes of central Europe; the lateral continuity of terranes and their internal structure, particularly where arc-magmatic complexes are involved; and the location and geometry of the terrane boundaries (oceanic sutures and strike-slip zones) that separate them.  相似文献   

3.
The basement of most peri-Gondwanan terranes in Mexico, the Appalachians, the Caledonides, and the Variscides is buried beneath younger Ediacaran arc, Palaeozoic passive margin, and/or Mesozoic–Cenozoic platformal carbonates. However, it is exposed in the Oaxaquia terrane of Mexico (Oaxacan, Novillo, Huiznopala, and Guichicovi complexes), where it is characterized by ca. 1.0–1.3 billion year protolith ages and igneous rocks with depleted mantle model ages (T DM) of 1.35–1.77 billion years. The T DM ages represent a bulk average composition of the source and can be used as a tracer; these T DM ages overlap with those in ca. 546 Ma arc clasts from the 65.5 Ma Chicxulub bolide breccia, suggesting that the northern Maya block is also underlain by Oaxaquia-type basement. Similar T DM ages occur in Ediacaran arc rocks in Suwannee (Florida), NW Avalonia, Ganderia, Iberia, Armorica, and Bohemia, and in lower Palaeozoic plutons cutting adjacent Palaeozoic passive margin rocks (Acatlán Complex, Gander Group), suggesting that Oaxaquia-type basement underlies these regions. These T DM ages are intermediate between those of SE Avalonia/Carolinia (0.75–1.1 billion years) and the ca. 2.0 Ga basement typical of NW Africa and the Channel Islands of the United Kingdom. The lateral extent of this Oaxaquia-type basement suggests that it formed a Precambrian rim around the periphery of northern Gondwana (Amazonia and NW Africa). The Oaxaquia-type basement beneath Ganderia and northwestern Avalonia suggests that these terranes were derived from the Oaxaquia margin of Amazonia. The polarity of the T DM ages in Avalonia (younger to the SE) suggests that, rather than being transferred orthogonally across Iapetus, these peri-Gondwanan terranes rotated clockwise through ~90° before accretion to Laurentia.  相似文献   

4.
Early Palaeozoic bimodal rift-related magmatism is widespread throughout much of the Variscides of Europe. It is traceable from the Polish Sudetes to NW Iberia. Granitic plutonism generally predates Cambro–Ordovician bimodal magmatism. In the N Bohemian Massif this early Palaeozoic granitic plutonism was generated by partial melting of Cadomian basement, whereas contemporaneous alkali granites with a mantle component are typical of the NW Iberian Massif. Silurian-Devonian mafic magmatism in the N Bohemian Massif, Massif Central and NW Iberian Massif is partly preserved as obducted ophiolites. Compositional diversity displayed by Cambro-Ordovician mafic magmatism can be accounted for by interaction between a spreading centre and an upwelling mantle plume. This indicates that combined tensional forces and mantle plume convection assisted the early Palaeozoic dispersal of terranes from the N Gondwana margin. Continued fragmentation resulted in development of an archipelago of related terranes separated by a network of seaways and formation of oceanic crust.  相似文献   

5.
Kyanite-rich and quartz-rich eclogites occur as lenses within amphibolite-facies quartzo-feldspathic gneisses in the Pohorje Mountains, Northern Slovenia, that form the easternmost Austroalpine basement. Major and trace elements indicate that the kyanite-rich eclogites were derived from plagioclase-rich gabbroic cumulates, whereas the quartz-rich eclogites represent more fractionated basaltic compositions. Both varieties are characterized by a LREE-depleted N-MORB type REE signature. Geothermobarometry and P-T pseudosections indicate that eclogites equilibrated at 1.8-2.5 GPa and 630-700 °C, consistently with the lack of coesite and with equilibration conditions of the chemically similar eclogites from the adjacent basement units at Koralpe and Saualpe type localities. Decompression reaction textures include (i) clinopyroxene-plagioclase intergrowths after omphacite, (ii) replacement of kyanite by corundum-plagioclase-spinel±sapphirine symplectites, (iii) breakdown of phengite to biotite-plagioclase sapphirine symplectites. The results of this study indicate that Koralpe, Saualpe and Pohorje high-pressure rocks represent former MORB-type oceanic crust that was subducted in the course of the late Cretaceous (approximately 100 Ma ago) collision between the European and the Apulian plates.  相似文献   

6.
<正>The Tian Shan Orogenic Belt,which is a subsidiary of the Central Asian Orogenic Belt,is the largest accretion area of continental crust on the Earth during the Phanerozoic.It has experienced several accretionary processes during the Palaeozoic period and has attracted much concern among geologists.An Early Palaeozoic intrusive rock belt extends  相似文献   

7.
Eclogitic metasediments from the central Qiangtang metamorphic terrane provide new insights into the continental subduction during the eastern and western Qiangtang collision. Petrologic observations show that the metasediments correspond to meta-sandstones of a continental margin. It is characterized by the garnet + omphacite + rutile + phengite + quartz assemblage, and the peak metamorphic temperature and pressure were estimated to be 535 ± 40 °C and ~27 kbar, respectively, by major element partitioning thermobarometry. Subsequent retrogression occurred at ~472 ± 30 °C and ~6–9 kbar. The occurrence of eclogitized central Qiangtang terrane indicates the subduction of the western Qiangtang passive continental margin beneath eastern Qiangtang when eastern and western Qiangtang collided along the Shuanghu suture.  相似文献   

8.
An integrated approach of petrographic analysis, whole rock geochemistry and microprobe analysis has been applied to obtain information on the geodynamic development and the provenance for Ordovician to Permian siliciclastic successions exposed within the Carnic Alps (Austria). Sandstone detrital mode and geochemical results refine previous geodynamic interpretations. Late Ordovician samples indicate a stable craton and recycled orogenic and, possible, extensional setting. The Early Carboniferous is interpreted to represent a compressional environment, followed by a Late Carboniferous molasse-type foreland basin, and a Permian extensional geodynamic setting. Contrasting geochemical patterns of post-Variscan and Permian sequences suggest a rift setting. Electron microprobe data of detrital white mica also indicate changes in the provenance. Compositional data reflect a shift from low- to medium-grade metamorphic (Ordovician) to high-grade metamorphic (Carboniferous) to low- to medium-grade metamorphic and plutonic source rocks (Permian). Additionally, our data show that various chemical discrimination diagrams do not include all possible ranges of sandstones, and that high contents of detrital mica and ultra-stable heavy minerals may cause misclassification. Consequently, we propose the use of multi-method approach for provenance studies, including the control of geochemical data by modal analysis and heavy mineral investigations.  相似文献   

9.
华北晚古生代聚煤盆地层序地层与聚煤作用关系的探讨   总被引:9,自引:0,他引:9  
华北聚煤盆地含煤岩系层序地层可划分为2个超层序、6个层序和28个准层序,聚煤作用同不同级别的层序地层单元密切相关,厚度大,分布广的煤层一般与三级海平面变化周期有关,形成于低位体系域和海侵域的转化期;厚度及分布范围相对较小的煤层,与四级海平面变化有关,形成于淮层序的界面上;次要煤层与幕式淮层序有关。薄煤层,煤线是沉积体系中的相。可容纳空间增长率和泥炭堆积速率的相互关系是泥炭沼泽是否持续发育的关键因素,而两者速率变化则是海平面变化,构造沉降,物源供给、古气候和古植物系统作用的结果。  相似文献   

10.
Field observations and U-Pb zircon data yield evidence that the Kaintaleck Complex represents a distinct crystalline basement unit of the eastern Greywacke Zone and contrasts partly with other pre-Alpine basement complexes of the Eastern Alps. The age data indicate possible Late Archean rock formation, several magmatic and metamorphic events in the Early Palaeozoic (ca. 520-490 and ca. 400-360 Ma), and low-grade metamorphic overprint in the Cretaceous. Zircons from a garnet gneiss layer in a plagioclase gneiss and amphibolite sequence yield an upper intercept age of ca. 2.55 Ga which is interpreted as a possible protolith age. The lower intercept age at 514 Ma represents either (1) a magmatic event or (2) a metamorphic overprint within amphibolite facies conditions. Magmatic zircons derived from granitic orthogneiss boulders of the Kalwang Conglomerate, which covers the crystalline basement, crystallised at ca. 500 Ma. The lower discordia intercepts of the orthogneiss boulders mark the Cretaceous low-grade metamorphic overprint. The lower intercept age of paragneiss zircons from another slice of the Kaintaleck Complex suggests a likely Devonian metamorphic event at ca. 390-400 Ma. The new data demonstrate that the Kaintaleck Complex experienced several stages of tectonothermal evolutions, which are in contrast to the evolution of the main mass of the Austroalpine basement. The data constrain linkages of this part of the Austroalpine basement to the Cordillere Ligérienne and Cadomian block within West-European Variscides.  相似文献   

11.
12.
Multidisciplinary studies of geotransects across the North European Plain and Southern North Sea, and geological reexamination of the Variscides of the North Bohemian Massif, permit a new 3-D reassessment of the relationships between the principal crustal blocks abutting Baltica along the Trans-European Suture Zone (TESZ). Accretion was in three stages: Cambrian accretion of the Bruno–Silesian, Lysogory and Malopolska terranes; end-Ordovician/early Silurian accretion of Avalonia; and early Carboniferous accretion of the Armorican Terrane Assemblage (ATA). Palaeozoic plume-influenced metabasite geochemistry in the Bohemian Massif explains the progressive rifting away of peri-Gondwanan crustal blocks before their accretion to Baltica. Geophysical data, faunal and provenance information from boreholes, and dated small inliers and cores confirm that Avalonian crust extends beyond the Anglo-Brabant Deformation Belt eastwards to northwest Poland. The location and dip of reflectors along the TESZ and beneath the North European Plain suggest that Avalonian crust overrode the Baltica passive margin, marked by a high-velocity lower crustal layer, on shallowly southwest-dipping thrust planes forming the Heligoland–Pomerania Deformation Belt. The “Variscan orocline” of southwest Poland masks two junctions between the Armorican Terrane Assemblage (ATA) and previously accreted crustal blocks. To the east is a dextrally transpressive contact with the Bruno–Silesian and Malopolska blocks, accreted in the Cambrian, while to the north is a thrust contact with easternmost Avalonia, deeply buried beneath younger sedimentary cover. In the northeast Bohemian and Rhenohercynian Massifs Devonian “early Variscide” deformation dominated by WNW and NW-directed thrusting, records closure of Ordovician–Devonian seaways between detached “islands” of the ATA and Avalonia.  相似文献   

13.
It is demonstrated that highly deformed and structurally separated Proterozoic metasediments, which have previously defied stratigraphic and sedimentological classification, may be correlated and characterised. This is done by using a multidisciplinary approach, including stratigraphic and structural mapping and sedimentological interpretation, developed during the Geodynamics Programme in Western Namaqualand (1975–1980). The metasediments under consideration belong to the economically important Aggeneys Subgroup, which hosts stratabound massive sulphide deposits at Aggeneys and Gamsberg (Gams). Four isolated areas are considered and it is shown that the Dabenoris, Kabas and Pella Formations, and the lower part of the Achab Formation are equivalent to the lower part of the Wortel Formation, and that the upper part of the stratigraphic column is composed of the upper units of the Achab Formation, the Gams Formation and the Blomhoek Formation. The Zuurwater Formation is, for the most part, equivalent to the lower portion of the Wortel Formation, but the uppermost strata are correlated with the Blomhoek Formation. These results illustrate that it is possible to obtain the information necessary for a palaeobasin analysis from even the most complex Proterozoic regions.  相似文献   

14.
15.
Detrital zircon from two basement blocks (Kubor and Bena Bena) in the central Highlands of Papua New Guinea has an age signature that strongly suggests a northern Australian provenance. Samples of the Omung Metamorphics, southeastern Kubor Block, together yield principal zircon populations with ages of ca 1.8 Ga (~10% of the total), ca 1.55 Ga (~10%), 470–440 Ma (~15%), ca 340 Ma (~10%) and 290–260 Ma (~40%).Two tonalite stocks of the Kubor Intrusive Complex, which intrude the Omung Metamorphics, yield indistinguishable ages of 244.8 ± 4.9 Ma and 239.1 ± 4.2 Ma.Therefore, the deposition and subsequent deformation of the Omung Metamorphics is Late Permian to Early Triassic. A sample of Goroka Formation (Bena Bena Block) contains detrital zircon of similar ages to the Omung Metamorphics, ca 1.8 Ga (5%), ca 1.55 Ga (~45%), ca 430 Ma (~5%) and ca 310 Ma (~40%), suggesting that the Goroka Formation has a similar provenance and might be correlative. In contrast, a metapsammite from the Bena Bena Formation yielded only ages of 290–280 Ma (85%) and ca 240 Ma (15%). A tuff interbedded in the Bena Bena Formation yielded only igneous zircon with a Late Triassic age of 221 ± 3 Ma. Contrary to previous interpretations, the Bena Bena Formation is probably younger than the Goroka Formation. Ages of New Guinea detrital zircon closely match those of igneous and detrital zircon from the Coen Inlier, northeastern Queensland, but contrast with the ages of zircon from terranes further south, east and west. The Kubor and Bena Bena Blocks are not suspect terranes, but rather form part of the Australian craton. The craton margin, modified by rifting during the Mesozoic, was re‐inverted during Cenozoic compression. The Australian craton, in the eastern Highlands of Papua New Guinea, extends at least as far north as the Markham Valley, the northern edge of the Bena Bena terrane.  相似文献   

16.
本文对出露于佳木斯地块北部金银库组变沉积岩和侵入其中的火成岩脉体中的锆石进行了系统的LA-ICP-MS/SIMS U-Pb定年和Hf同位素研究,旨在限定金银库组的沉积时限,并揭示其物源及沉积环境。3个样品中锆石呈自形-半自形,显示典型的岩浆生长环带或条痕状吸收,暗示其岩浆成因。研究结果显示:采自金银库组绢云母片岩中的碎屑锆石72个分析点给出1 955~457 Ma的年龄区间,主要峰期年龄为814、757、568、491和463 Ma,其εHft)值为-13.9~-0.1,Hf同位素一阶段模式年龄TDM1和二阶段模式年龄TDM2分别为1 827~1 307 Ma和2 411~1 715 Ma。采自侵入金银库组的花岗细晶岩和辉绿岩分别给出了263和267 Ma的结晶年龄,前者的εHft)值为0.9~2.0,Hf同位素二阶段模式年龄TDM2为1 110~1 047 Ma;后者的εHft)值为-7.7~6.4,Hf同位素一阶段模式年龄TDM1为1 206~662 Ma。结合佳木斯地块及邻区约430 Ma火成岩的存在和金银库组中该期碎屑锆石的缺乏以及碎屑锆石年龄众数及其Hf同位素组成,我们认为金银库组的形成时代应为晚奥陶世至早志留世(463~430 Ma),形成于被动大陆边缘背景,沉积物源主要来自佳木斯地块及其邻区的古元古代和早古生代早期火成岩。  相似文献   

17.
Three monazite generations were observed in garnet-bearing micaschists from the Schobergruppe in the basement to the south of the Tauern Window, Eastern Alps. Low-Y monazite of Variscan age (321?±?14?Ma) and high-Y monazite of Permian age (261?±?18?Ma) are abundant in the mica-rich rock matrix and in the outer domains of large garnet crystals. Pre-Alpine monazite commonly occurs as polyphase grains with low-Y Variscan cores and high-Y Permian rims. Monazite of Eo-Alpine age (112?±?22?Ma) is rarer and was observed as small, partly Y-enriched grains (3?wt. %?Y2O3) in the rock matrix and within garnet. Based on monazite-xenotime thermometry, Y?+?HREE values in monazite indicate minimum crystallization conditions of 500?°C during the Variscan and 650?°C for the Permian and Alpine events, respectively. Garnet zoning and thermobarometric calculations with THERMOCALC 3.21 record an amphibolite facies, high-pressure stage of ~600?°C/13?C16?kbar, followed by a thermal maximum at 650?C700?°C and 6?C9?kbar. The Eo-Alpine age for these two events is supported by inclusions of Cretaceous monazite in the garnet domains used for thermobarometric constraints and through the high growth temperatures of Eo-Alpine monazite, which is consistent with that of the thermal maximum (~700?°C). The age and growth conditions of a few Mn-rich garnet cores, sporadically present within Eo-Alpine garnet, are unclear because inclusions of monazite, plagioclase and biotite necessary for thermobarometric- and age constraints are absent. However, based on monazite thermometry, Permian and Variscan metamorphic conditions were high enough for the growth of pre-Alpine garnet. The formation of Variscan garnet and its later resorption, plus Y-release, would also explain the high Y in Permian monazite, which cannot originate from preexisting Variscan monazite only. Monazite of Variscan, Permian and/or Eo-Alpine ages were also observed in other garnet-bearing micaschists from the Schobergruppe. This suggests that the basement of the Schobergruppe was overprinted by three discrete metamorphic events at conditions of at least lower amphibolite facies. While the Variscan event affected all parts of this basement, the younger events are more pronounced in its structurally lower units.  相似文献   

18.
Detrital zircon U–Pb LAM-ICPMS age patterns for sandstones from the mid-Permian –Triassic part (Rakaia Terrane) of the accretionary wedge forming the Torlesse Composite Terrane in Otago, New Zealand, and from the early Permian Nambucca Block of the New England Orogen, eastern Australia, constrain the development of the early Gondwana margin. In Otago, the Triassic Torlesse samples have a major (64%), younger group of Permian–Early Triassic age components at ca 280, 255 and 240 Ma, and a minor (30%) older age group with a Precambrian–early Paleozoic range (ca 1000, 600 and 500 Ma). In Permian sandstones nearby, the younger, Late Permian age components are diminished (30%) with respect to the older Precambrian–early Paleozoic age group, which now also contains major (50%) and unusual Carboniferous age components at ca 350–330 Ma. Sandstones from the Nambucca Block, an early Permian extensional basin in the southern New England Orogen, follow the Torlesse pattern: the youngest. Early Permian age components are minor (<20%) and the overall age patterns are dominated (40%) by Carboniferous age components (ca 350–320 Ma). These latter zircons are inherited from either the adjacent Devonian–Carboniferous accretionary wedge (e.g. Texas-Woolomin and Coffs Harbour Blocks) or the forearc basin (Tamworth Belt) farther to the west, in which volcaniclastic-dominated sandstone units have very similar pre-Permian (principally Carboniferous) age components. This gradual variation in age patterns from Devonian–late Carboniferous time in Australia to Late Permian–mid-Cretaceous time in New Zealand suggests an evolutionary model for the Eastern Gondwanaland plate margin and the repositioning of its subduction zone. (1) A Devonian to Carboniferous accretionary wedge in the New England Orogen developing at a (present-day) Queensland position until late in the Carboniferous. (2) Early Permian outboard repositioning of the primary, magmatic arc allowing formation of extensional basins throughout the New England Orogen. (3) Early to mid-Permian translocation of the accretionary wedge and more inboard active-margin elements, southwards to their present position. This was accompanied by oroclinal bending which allowed the initiation of a new, late Permian to Early Triassic accretionary wedge (eventually the Torlesse Composite Terrane of New Zealand) in an offshore Queensland position. (4) Jurassic–Cretaceous development of this accretionary wedge offshore, in northern Zealandia, with southwards translation of the various constituent terranes of the Torlesse Composite Terrane to their present New Zealand position.  相似文献   

19.
Ordovician volcano-sedimentary successions of the Bavarian facies association in the Saxothuringian basin record the continental rift phase of the separation of the Saxothuringian Terrane from Gondwana. An 80 m succession from the Vogtendorf beds and Randschiefer Series (Arenig-Middle Ordovician), exposed along the northern margin of the Münchberg Gneiss Massif in northeast Bavaria, were subjected to a study of their sedimentology, physical volcanology and geochemistry. The Randschiefer series previously has been interpreted as lavas, tuffs, sandstones and turbidites, but the studied Ordovician units include four main lithological associations: mature sandstones and slates, pillowed alkali-basalts and derivative mass flow deposits, trachyandesitic lavas and submarine pyroclastic flow deposits interbedded with turbidites. Eight lithofacies have been distinguished based on relict sedimentary structures and textures, which indicate deposition on a continental shelf below wave base. The explosive phase that generated the pyroclastic succession was associated with the intrusion of dykes and sills, and was succeeded by the eruption of pillowed basalts. Debris flow deposits overlie the basalts. Ordovician volcanism in this region, therefore, alternated between effusive and explosive phases of submarine intermediate to mafic volcanism.

Based on geochemical data, the volcanic and pyroclastic rocks are classified as basalts and trachyandesites. According to their geochemical characteristics, especially to their variable concentrations of incompatible elements such as the High Field Strength Elements (HFSE), they can be divided into three groups. Group I, which is formed by massive lavas at the base of the succession, has extraordinarily high contents of HFSE. The magmas of this group were probably derived from a mantle source in the garnet stability field by low (ca. 1%) degrees of partial melting and subsequent fractionation. Group II, which comprises the pillow lavas at the top of the sequence, displays moderate enrichment of HFSE. This can be explained by a slightly higher degree of melting (ca. 1.6%) for the primary magma. Group I and II melts fractionated from their parental magmas in different magma chambers. The eruption centres of Groups I and II, therefore, cannot be the same, and the volcanic rocks must have originated from different vents. The sills and pyroclastic flow deposits of Group III stem at least partly from the same source as Group I. Rocks of Group I most likely mixed together with Group II components during the formation of the Group III flows, which became hybridised during eruption, transportation and emplacement.

The sedimentological and geochemical data best support a rift as the tectonic setting of this volcanism, analogous to modern continental rift zones. Hence, the rift-associated volcanic activity preserved in the Vogtendorf beds and Randschiefer Series represents an early Ordovician stage of rift volcanism when the separation of the Saxothuringian Terrane from Gondwana had just commenced.  相似文献   


20.
华北北部洪水庄组黑色页岩是中元古代的富有机质沉积,它可能记录了当时重要的地球化学信息。通过对洪水庄组页岩中的常量和微量元素特征的分析,研究了洪水庄组的物源及其风化作用。高Th/Sc、Al2O3/TiO2、La/Sc、La/Cr、La/Co、Th/Cr和Th/Co值,低Cr/Zr和TiO2/Zr比值,Euan值、Co/Y Ti/Zr关系和La Th Sc组成表明洪水庄组页岩物源主要为上地壳中的长英质花岗闪长岩。洪水庄组页岩的Al、Ca、Na和K组成表明其具有较高的化学蚀变指数(CIA),同时,元素组成的化学风化作用轨迹反映了洪水庄组页岩受到钾交代作用的影响,可能导致CIA值被低估,其原始CIA值应在90以上。高的原始CIA、化学风化指数(CIW)和斜长石蚀变指数(PIA)表明洪水庄组物源区经历了强烈的化学风化作用。化学风化作用强度以及微量元素组成特征揭示了中元古代洪水庄组沉积时期可能处于温暖潮湿的气候条件,这与中元古代时期大气高CO2浓度以及华北板块古大陆当时位于低纬度地区重建的结果不谋而合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号