首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports the first results of a study of 11 isotope systems (3He/4He, 40Ar/36Ar, 34S/32S, 65Cu/63Cu, 62Ni/60Ni, 87Sr/86Sr, 143Nd/144Nd, 206–208Pb/204Pb, Hf–Nd, U–Pb, and Re–Os) in the rocks and ores of the Cu–Ni–PGE deposits of the Norilsk ore district. Almost all the results were obtained at the Center of Isotopic Research of the Karpinskii All-Russia Research Institute of Geology. The use of a number of independent genetic isotopic signatures and comprehensive isotopic knowledge provided a methodic basis for the interpretation of approximately 5000 isotopic analyses of various elements. The presence of materials from two sources, crust and mantle, was detected in the composition of the rocks and ores. The contribution of the crustal source is especially significant in the paleofluids (gas–liquid microinclusions) of the ore-forming medium. Crustal solutions were probably a transport medium during ore formation. Air argon is dominant in the ores, which indicates a connection between the paleofluids and the atmosphere. This suggests intense groundwater circulation during the crystallization of ore minerals. The age of the rocks and ores of the Norilsk deposits was determined. The stage of orebody formation is restricted to a narrow age interval of 250 ± 10 Ma. An isotopic criterion was proposed for the ore-bearing potential of mafic intrusions in the Norilsk–Taimyr region. It includes several interrelated isotopic ratios of various elements: He, Ar, S, and others.  相似文献   

2.
Mining induced subsidence can significantly affect mining costs where major surface facilities and natural environment need to be protected. Overburden grout injection is a technology used to control coal mine subsidence by injecting the mine waste material extracted from the coal back into the inter-burden rock during longwall mining. The flowing slurry is here categorised as a nonlinear viscous cohesive (Bingham plastic) fluid. During longwall mining the grout slurry is pumped into the separated beds of the rock mass through a central vertical borehole, which is drilled deep into the inter-burden rock strata above the coal seam. However, a blockage can occur in the injection system when the slurry velocity falls below a certain critical threshold velocity, indicating a material phase change from cohesive-viscous to cohesive-frictional. In situ field injection tests through boreholes have been simulated at a smaller scale at the CSIRO laboratory in Brisbane by pumping the slurry through a radial disk (gap = 4 mm) from its centre. Laboratory experiments indicate a general, nonlinear, cohesive, viscous, frictional model for shear behaviour of the slurry, in which the material shear parameters are functions of the disk radial distance. Complete dimensional and dimensionless analytical solutions have been developed based on an approach related to Bingham–Herschel–Bulkley fluid mechanics. The derived formulae include relations for minimum pump pressure, local pressure and pressure gradient, wall shear stress, volume rate, velocity and velocity gradient. The theoretical results match the experimental measurements. The experiments covered slurries with maximum particle sizes of 0.5 to 2 mm with about 50% being larger than 100 µm. The viscosities at the various solids concentrations were measured with a standard torsion viscometer. This study differs from the previous research in several distinct aspects, namely, consideration of the variable shear parameters rather than fixed values, inclusion of total nonlinear behaviour, and implementation of a friction function to mimic behaviour of the deposited and consolidating stiff slurry, which can cause a significant pressure rise as a result of the increased shear resistance.  相似文献   

3.
Komatiites are mantle-derived ultramafic volcanic rocks. Komatiites have been discovered in several States of India, notably in Karnataka. Studies on the distribution of trace-elements in the komatiites of India are very few. This paper proposes a simple, accurate, precise, rapid, and non-destructive wavelength-dispersive x-ray fluorescence (WDXRF) spectrometric technique for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in komatiites, and discusses the accuracy, precision, limits of detection, x-ray spectral-line interferences, inter-element effects, speed, advantages, and limitations of the technique. The accuracy of the technique is excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Zr, Nb, Ba, Pb, and Th and very good (within 4%) for Y. The precision is also excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th. The limits of detection are: 1 ppm for Sc and V; 2 ppm for Cr, Co, and Ni; 3 ppm for Cu, Zn, Rb, and Sr; 4 ppm for Y and Zr; 6 ppm for Nb; 10 ppm for Ba; 13 ppm for Pb; and 14 ppm for Th. The time taken for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in a batch of 24 samples of komatiites, for a replication of four analyses per sample, by one operator, using a manual WDXRF spectrometer, is only 60 hours.  相似文献   

4.
Susan E. Hogg 《Earth》1982,18(1):59-76
Following McGee's (1897) use of the term sheetflood, there developed a variety of conflicting opinions and numerous terminologies relating to this process, many of which are ill-considered and poorly defined. A classification system is devised on both a hydrologic and geomorphic basis which dispenses with many superfluous terms that have been used with respect to sheetfloods. Magnitude of a storm is expressed in terms of the amount of surface runoff generated from a given storm due to the surface conditions.A sheetflood is defined as a sheet of unconfined flood water moving down a slope. The frequency of a sheetflood is relatively low while its magnitude is relatively great. Sheetflow is defined as relatively high-frequency, low-magnitude overland flow occurring in a continuous sheet and is restricted to laminar flow conditions. Sheetwash, a term of geomorphic origin, is considered to be redundant and is superseded by the more meaningful term rainwash defined as the washing action of rain on slopes.  相似文献   

5.
Rb-Sr isotopic dating of phlogopite megacryst samples separated from Sturgeon Lake kimberlite, Saskatchewan, yields a crystallization age of 98±1 Ma (2 , MSWD=1.2; 87Sr/86Sr(t)=0.7059). The 40Ar/39Ar analyses of a phlogopite megacryst sample indicate the presence of large amounts of excess 40Ar and yield an excessively old age of 410 Ma. Assessment of the Ar data using isotope correlation plots indicates clustering of the data points about a mixing line between the radiogenic 40Ar component at 98 Ma and a trapped component with uniform 36Ar/40Ar and Cl/40Ar. Values of {ie212-1} as high as +20%. (VSMOW) for calcite from the groundmass and a whole-rock sample indicate pervasive lowtemperature alteration. The {ie212-2} of matrix carbonate is-11.3%. (PDB), slightly lighter than typical values from the literature. The {ie212-3} values of about +5%. (VSMOW) for brown phlogopite megacrysts may be primary, green phlogopites are interpreted to be an alteration product of the brown variety and are 2%. heavier. Initial Nd-Sr-Pb isotopic ratios for a whole-rock sample {ie212-4}; 87Sr/86Sr=0.7063, 206Pb/204Pb=18.67, 207Pb/204Pb=15.54, 208Pb/204Pb=38.97) suggest an affinity with group I kimberlites. Initial {ie212-5} values of +1.7 and +0.5 (87Sr/ 86Sr(t)=0.7053 and 0.7050) for eclogitic and lherzolitic garnet megacryst samples, and values of 0.0 for two phlogopite megacryst samples reflect an origin from an isotopically evolving melt due to assimilation of heterogeneous mantle. Lilac high-Cr lherzolitic garnet megacrysts give an unusually high {ie212-6} of +28.6 (87Sr/86Sr=0.7046) indicating a xenocrystic origin probably from the lithospheric mantle. The very radiogenic 87Sr/86Sr and 206Pb/204Pb ratios of the kimberlite are consistent with melting of EM II (enriched) mantle components.  相似文献   

6.
The effects of composition and of temperature on the orthorhombic, Pca2 1 to cubic, F4ˉ3m transition of the stuffed cristobalite structure are reported. A distorton index which measures the departure of the orthorhombic unit cell from a metrically cubic cell shows that at room temperature, distortion increases in the progression K2CdSiO4 <K2MgSiO4 <K2ZnSiO4≈K2CoSiO4. High temperature X-ray powder measurements document an apparently discontinuous transition to a structure of F4ˉ3m symmetry. Differential scanning calorimetry shows a sharp, reversible, first order transition to the high temperature phase at about 500–600 °C for these compounds. Measured transformation enthalpies in the range of 7 to 16 J/g correlate roughly with the distortion index. The transformation involves tetrahedral rotation to an orientationally disordered cubic structure which retains an ordered M2+/Si distribution. Received: 8 November 1996 / Revised, accepted: 14 October 1997  相似文献   

7.
The field setting, petrography, mineralogy, and geochemistry of a suite of picrite basalts and related magnesian olivine tholeiites (New Georgia arc picrites) from the New Georgia Volcanics, Kolo caldera in the active ensimatic Solomon Islands arc are presented. These lavas, with an areal extent in the order of 1002 km and almost 1 km thick in places, are located close to the intersection of the Woodlark spreading zone with the Pacific plate margin. They contain abundant olivine (Fo94-75) and diopside (Cr2O3 1.1-0.4%, Al2O3 1–3%), and spinels characterised by a large range in Cr/(Cr+Al) (0.85–0.46) and Mg/(Mg+ Fe++) (0.65–0.1). The spinels are Fe+++ rich, with Fe+++/ (Fe++++Cr+Al) varying from 0.06 to 1.0. A discrete group of spinels with the highest Cr/(Cr+Al) (0.83–0.86) and lowest Fe+++ contents are included in the most Mg-rich olivine (Fo91–94) and both may be xenocrystal in origin.The lavas, which range between 10–28% MgO, define linear trends on oxide (element) — MgO diagrams and these trends are interpreted as olivine (0.9) clinopyroxene (0.1) control lines. For the reconstructed parent magma composition of these arc picrites, ratios involving CaO, Al2O3, TiO2, Zr, V and Sc are very close to chondritic. REE patterns are slightly LREE — enriched ((La/Sm)N 1.3–1.43) and HREE are flat. All lavas show marked enrichments in K, Rb, Sr, Ba, and LREE relative to MORB with similar MgO contents, but the TiO2 content of the proposed parent magma is close to those of postulated primary MORB liquids. It is proposed that the arc parent magma was produced by partial melting of sub-oceanic upper mantle induced by the introduction of LILE — enriched hydrous fluids derived by dehydration and/or partial melting of subducted ocean crust and possibly minor sediments.  相似文献   

8.
Between 1985 and 1991, two new mountain protected areas (MTNPA) covering more than 35,000 km2 and based on participatory management models — the Makalu-Barun National Park and Conservation Area, Nepal, and Qomolangma Nature Preserve, Tibet Autonomous Region — were successfully established through the collaborative efforts of Woodlands Mountain Institute and conservationists in China and Nepal. Characteristics common to both projects include the importance of establishing (1) effective rationales, (2) local support constituencies, (3) a senior advisory group, (4) a task force, (5) linkages between conservation and development, and (6) fund raising mechanisms. The lessons derived from the experiences of Woodlands Mountain Institute are of significant value to others in preserving MTNPA. Increased collaboration and communication between all interested in conservation, however, will remain a critical component for expanding mountain protected area coverage to throughout the world.  相似文献   

9.
《Chemical Geology》2007,236(1-2):13-26
We examined the coprecipitation behavior of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides under two different fluoride forming conditions: at < 70 °C in an ultrasonic bath (denoted as the ultrasonic method) and at 245 °C using a Teflon bomb (denoted as the bomb method). In the ultrasonic method, small amounts of Ti, Mo and Sn coprecipitation were observed with 100% Ca and 100% Mg fluorides. No coprecipitation of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides occurred when the sample was decomposed by the bomb method except for 100% Ca fluoride. Based on our coprecipitation observations, we have developed a simultaneous determination method for B, Ti, Zr, Nb, Mo, Sn, Sb, Hf and Ta by Q-pole type ICP-MS (ICP-QMS) and sector field type ICP-MS (ICP-SFMS). 9–50 mg of samples with Zr–Mo–Sn–Sb–Hf spikes were decomposed by HF using the bomb method and the ultrasonic method with B spike. The sample was then evaporated and re-dissolved into 0.5 mol l 1 HF, followed by the removal of fluorides by centrifuging. B, Zr, Mo, Sn, Sb and Hf were measured by ID method. Nb and Ta were measured by the ID-internal standardization method, based on Nb/Mo and Ta/Mo ratios using ICP-QMS, for which pseudo-FI was developed and applied. When 100% recovery yields of Zr and Hf are expected, Nb/Zr and Ta/Hf ratios may also be used. Ti was determined by the ID-internal standardization method, based on the Ti/Nb ratio from ICP-SFMS. Only 0.053 ml sample solution was required for measurement of all 9 elements. Dilution factors of ≤ 340 were aspirated without matrix effects. To demonstrate the applicability of our method, 4 carbonaceous chondrites (Ivuna, Orgueil, Cold Bokkeveld and Allende) as well as GSJ and USGS silicate reference materials of basalts, andesites and peridotites were analyzed. Our analytical results are consistent with previous studies, and the mean reproducibility of each element is 1.0–4.6% for basalts and andesites, and 6.7–11% for peridotites except for TiO2.  相似文献   

10.
Most sulfide-rich magmatic Ni-Cu-(PGE) deposits form in dynamic magmatic systems by partial melting S-bearing wall rocks with variable degrees of assimilation of miscible silicate and volatile components, and generation of barren to weakly-mineralized immiscible Fe sulfide xenomelts into which Ni-Cu-Co-PGE partition from the magma. Some exceptionally-thick magmatic Cr deposits may form by partial melting oxide-bearing wall rocks with variable degrees of assimilation of the miscible silicate and volatile components, and generation of barren Fe ± Ti oxide xenocrysts into which Cr-Mg-V ± Ti partition from the magma. The products of these processes are variably preserved as skarns, residues, xenoliths, xenocrysts, xenomelts, and xenovolatiles, which play important to critical roles in ore genesis, transport, localization, and/or modification. Incorporation of barren xenoliths/autoliths may induce small amounts of sulfide/chromite to segregate, but incorporation of sulfide xenomelts or oxide xenocrysts with dynamic upgrading of metal tenors (PGE > Cu > Ni > Co and Cr > V > Ti, respectively) is required to make significant ore deposits. Silicate xenomelts are only rarely preserved, but will be variably depleted in chalcophile and ferrous metals. Less dense felsic xenoliths may aid upward sulfide transport by increasing the effective viscosity and decreasing the bulk density of the magma. Denser mafic or metamorphosed xenoliths may also increase the effective viscosity of the magma, but may aid downward sulfide transport by increasing the bulk density of the magma. Sulfide wets olivine, so olivine xenocrysts may act as filter beds to collect advected finely dispersed sulfide droplets, but other silicates and xenoliths may not be wetted by sulfides. Xenovolatiles may retard settling of – or in some cases float – dense sulfide droplets. Reactions of sulfide melts with felsic country rocks may generate Fe-rich skarns that may allow sulfide melts to fractionate to more extreme Cu-Ni-rich compositions. Xenoliths, xenocrysts, xenomelts, and xenovolatiles are more likely to be preserved in cooler basaltic magmas than in hotter komatiitic magmas, and are more likely to be preserved in less dynamic (less turbulent) systems/domain/phases than in more dynamic (more turbulent) systems/domains/phases. Massive to semi-massive Ni-Cu-PGE and Cr mineralization and xenoliths are often localized within footwall embayments, dilations/jogs in dikes, throats of magma conduits, and the horizontal segments of dike-chonolith and dike-sill complexes, which represent fluid dynamic traps for both ascending and descending sulfides/oxides. If skarns, residues, xenoliths, xenocrysts, xenomelts, and/or xenovolatiles are present, they provide important constraints on ore genesis and they are valuable exploration indicators, but they must be included in elemental and isotopic mass balance calculations.  相似文献   

11.
The Markandeya River Basin stretches geographically from 15o56′ to 16o08′ N latitude and 74o37′ to 74o58′ E longitude, positioned in the midst of Belgaum district, in the northern part of Karnataka. The groundwater quality of 54 pre-monsoon samples in the Markandeya River Basin was evaluated for its suitability for drinking and irrigation purposes by estimating pH, EC, TDS, hardness and alkalinity besides major cations (Na+, K+, Ca2+, Mg2+) and anions (HCO3–, Cl–, SO42–, PO43-, F-, NO3–), boron, SAR, % Na, RSC, RSBC, chlorinity index, SSP, non-carbonate hardness, Potential Salinity, Permeability Index, Kelley’s ratio, Magnesium hazard and Index of Base Exchange. Negative Index of Base Exchange indicates the chloro-alkaline disequilibrium in the study area and the majority of water samples fall in the rock dominance field based on Gibbs’ ratio. Permeability indices of classes I and II suggest suitability of groundwater for irrigation. Based on Cl, SO4, HCO3 concentrations, water samples can be classified as normal chloride (96.3%) and normal sulfate (94.4%) and normal bicarbonate (44.4%) water types.  相似文献   

12.
We describe the new mineral species titanium,ideally Ti,found in the podiform chromitites of the Luobusha ophiolite in Tibet,People’s Republic of China.The irregular crystals range from 0.1 to 0.6 mm in diameter and form an intergrowth with coesite and kyanite.Titanium is silver grey in colour,the luster is metallic,it is opaque,the streak is grayish black,and it is non-fluorescent.The mineral is malleable,has a rough to hackly fracture and has no apparent cleavage.The estimated Mohs hardness is 4,and the calculated density is 4.503 g/cm3.The composition is Ti 99.23-100.00 wt%.The mineral is hexagonal,space group P63 /mmc.Unit-cell parameters are a 2.950(2),c 4.686(1),V 35.32(5) 3,Z = 2.The five strongest powder diffraction lines [d in(hkl)(I/I0)] are: 2.569(010)(32),2.254(011)(100),1.730(012)(16),1.478(110)(21),and 0.9464(121)(8).The species and name were approved by the CNMNC(IMA 2010–044).  相似文献   

13.
Optical constituents as suspended particulate matter (SPM), chlorophyll (Chl-a), colored dissolved organic matter (CDOM), and grain sizes were obtained on a transect in the arctic fjord-type estuary Kangerlussuaq (66°) in August 2007 along with optical properties. These comprised diffuse attenuation coefficient of downwelling PAR (K d(PAR)), upwelling PAR (K u(PAR)), particle beam attenuation coefficient (c p), and irradiance reflectance R(−0, PAR). PAR is white light between 400 and 700 nm. The estuary receives melt water from the Greenland Inland Ice and stations covered a transect from the very high turbid melt water outlet to clear marine waters. Results showed a strong spatial variation with high values as for suspended matter concentrations, CDOM, diffuse attenuation coefficient K d(PAR), particle beam attenuation coefficients (c p), and reflectance R(−0, PAR) at the melt water outlet. Values of optical constituents and properties decreased with distance from the melt water outlet to a more or less constant level in central and outer part of the estuary. There was a strong correlation between inorganic suspended matter (SPMI) and diffuse attenuation coefficient K d(PAR) (r 2 = 0.92) and also for particle beam attenuation coefficient (c p; r 2 = 0.93). The obtained SPMI specific attenuation—K d*(PAR) = 0.13 m2 g−1 SPMI—and the SPMI specific particle beam attenuation—c p* = 0.72 m2 g−1—coefficients were about two times higher than average literature values. Irradiance reflectance R(−0, PAR) was comparatively high (0.09−0.20) and showed a high (r 2 = 0.80) correlation with K u(PAR). Scattering dominated relative to absorption—b(PAR)/a(PAR) = 12.3. Results strongly indicated that the high values in the optical properties were related to the very fine particle sizes (mean = 2–6 μm) of the suspended sediment. Data and results are discussed and compared to similar studies from both temperate and tropical estuaries.  相似文献   

14.
The recently discovered Weilasituo Sn-polymetal deposit is located in the southern part of the Great Xing'an Range of Inner Mongolia, NE China, which is belonged to the eastern part of the Central Asian Orogenic Belt (CAOB). Sn-polymetal mineralization is closely related to the emplacement of the Early Cretaceous fine- to medium-grained quartz porphyry. Three types of mineralization have been recognized at Weilasituo with the disseminated and stockwork Sn-polymetal mineralization mainly hosted by the quartz porphyry, the vein-type Sn-polymetal mineralization hosted by NE-trending and WE-trending fractures and faults in the upper and outer part of the porphyry, and breccia mineralization occurred within a steep cryptoexplosive breccia pipe. The ore-related alteration typically consists of Na-Ca-Sr alteration and greisen.In order to understand the petrogenetic link between the Sn-polymetal mineralization and the host quartz porphyry, this paper presents new whole-rock geochemistry for the quartz porphyry, EPMA analysis of ore and gangue minerals, and in situ U-Pb dating of cassiterite. The Laser Abrasion Multiple Collector Inductively Coupled Plasma Mass Spectrometer (LA-MCICP-MS) cassiterite U-Pb dating yields two well-defined isochron ages of 138 ± 6 Ma for disseminated ore and 135 ± 6 Ma for the vein-type ore, which could be regarded as the ore-forming age. The cassiterite U-Pb ages (ca. 138–135 Ma) determined in this study, together with previous data, reveals the close temporal and genetic relationship between the mineralization event and the emplacement of the quartz porphyry.The quartz porphyry is characterized by high SiO2, Na2O, and A/CNK values (1.09–1.21). REE tetrad effect combined with extremely high Rb/Sr, K/Ba ratios and low K/Rb, Zr/Hf, La/Nb, La/Ta and Eu/Eu* ratios indicate that the quartz porphyry is a highly fractionated peraluminous I-type granite that is hydrothermally altered. Low εNd(t) values of 4.27–0.28 and the two-stage depleted mantle Nd model ages (T2DM = ca. 1279–908 Ma) for the quartz porphyry, are similar to granites in Precambrian microcontinents of the eastern part of the Central Asian Orogen (CAOB). This suggests that the quartz porphyry was derived from the remelting of juvenile crust and Precambrian rocks in an extensional setting. Therefore, the highly fractional crystallization and magmatic-hydrothermal interactions of the quartz porphyry have contributed to the formation of the Weilasituo Sn-polymetal deposit.  相似文献   

15.
Metapelites are exposed at Wadi Ba’ba, east of Abu Zenima city; represent the northwestern extension of the Fieran-Solaf Metamorphic Complex, Sinai Peninsula, Egypt. The metapelites are characterized by qtz + pl (An24–28) + bt + grt ± crd ± sil mineral assemblage, indicating upper amphibolite facies with peak metamorphic conditions of 700 °C and pressures of 7 kbar, as determined by conventional geothermobarometeric methods. This resulted in incipient migmatization, forms patches of leucosomes and melanosomes. Geochemical investigation indicates that the precursor sediments of the metapelites had been deposited as immature Fe-rich shales from source materials of dominantly intermediate composition. Source area exhibited weak to moderate chemical weathering in a tectonically active continental marginal basin within a continental-arc system. A strong shallow-dipping foliation, characterizing the metapelites, was folded around an open antiform with sub-horizontal south plunging hinge.Phase equilibria calculations in the KFMASH system indicate that the peak metamorphic conditions formed at 730–750 °C and 6.8–7.9 kbar. This was followed by a retrogression formed at 770–785 °C and 3.9–4.5 kbar. Hence, this implies an isothermal decompression and rapid exhumation of the metapelites from depth (25–29 km) in the lower crustal level at peak conditions, continuous to include shallow to middle crustal level (14–17 km), at overprint retrograde conditions. Subsequent isobaric cooling took place at 720–750 °C and 3.6–4.5 kbar. The resulting isothermal decompression followed by isobaric cooling clockwise P–T path of the metapelites is more likely, in which the high-temperatures attained maximum conditions during isothermal decompression were enhanced by heat flux, due to the presence of an active magmatic arc that formed on top of subducting young lithosphere. This is supported by a moderate geothermal gradient of 27–43 °C/km and dating compatibility of the Sinai granitoids and the metamorphic complexes. The P–T path segment records the tectonothermal histories of crustal thickening as a result of the East and West Gondwana collision at the metamorphic peak. This was subsequent by extensional and crustal thinning with syn-metamorphic magmatic intrusions, during P–T path retrogression, which resulted in the final assembly of the Arabian–Nubian Shield during Neoproterozoic.  相似文献   

16.
The Bonin archipelago represents an uplifted fore-arc terrainwhich exposes the products of Eocene supra-subduction zone magmatism.Chichijima, at the centre of the chain, represents the typelocality for the high-Mg andesitic lava termed boninite. Therange of extrusives which constitute the boninite series volcanicsare present on Chichijima, and are disposed in the sequenceboninite-andesite-dacite with increasing height in the volcano-stratigraphy.Progression to evolved compositions within the Chichijima boniniteseries is controlled by crystal fractionation from a boniniteparental magma containing 15% MgO. Olivine and clinoenstatiteare the initial liquidus phases, but extraction of enstatiticorthopyroxene, followed by clinopyroxene and plagioclase, isresponsible for the general evolution from boninite, throughandesite, to dacite. Some andesites within the overlying MikazukiyamaFormation are petrographically distinct from the main boniniteseries in containing magnetite phenocrysts and a high proportionof plagioclase. As such, these andesites have affinities withthe calc-alkaline series. Major and trace element data for 74 boninitic series rocks fromChichijima are presented. Although major element variation isdominantly controlled by high-level crystal fractionation, thelarge variations in incompatiable trace element concentrationsat high MgO compositions cannot be explained by this mechanism.Nd, Pb, and Sr isotopic data indicate the following: (1) a strongoverprint on 87Sr/86Sr by seawater alteration; (2) Pb isotopeslie above the northern hemisphere reference line (NHRL) andare thus similar to the <30-Ma are and basin lavas of theIzu—Bonin system, and (3) Nd(40 Ma) ranges between 2.8and 6.8 within the boninite series volcanics. Differences inrare-earth elements (REE), Zr, Ti, and 143Nd/144Nd at similardegrees of fractionation can be explained by the addition ofa component of fixed composition from the down-going oceaniccrustal slab to a variably depleted source region within theoverlying wedge. Data presented for Sm/Zr and Ti/Zr indicatethat boninite series volcanics are characterized by low valuesfor both of these ratios. In particular, boninites appear tohave uniquely low Sm/Zr ratios. These characteristics may bethe result of slab melting in the presence of residual amphibole;the resultant melt could combine with typical slab dehydrationfluids and infiltrate the overlying mantle wedge. Such a fluid—meltcomponent could mix either with shallow mantle or directly withprimitive melts from depleted mantle. Trace elements, REE, andisotope data thus point to a model for boninite genesis whichrequires tightly constrained pressure—temperature conditionsin the slab combined with melting of a variably depleted sourcein the overlying wedge. Such constraints are rarely met exceptduring the subduction of juvenile oceanic crust beneath a young,hot overriding plate.  相似文献   

17.
A series of high temperature experiments was undertaken to study partitioning of several highly siderophile elements (HSE; Ru, Rh, Pd, Re, Os, Ir, Pt and Au) between Cr-rich spinel, olivine, pyroxene and silicate melt. Runs were carried out on a Hawaiian ankaramite, a synthetic eucrite basalt, and a DiAn eutectic melt, at one bar, 19 kbar, and 20 kbar, respectively, in the temperature range of 1200 to 1300°C, at oxygen fugacities between the nickel-nickel oxide (NNO) and hematite-magnetite (HM) oxygen buffers. High oxygen fugacities were used to suppress the formation of HSE-rich “nuggets” in the silicate melts. The resulting oxide and silicate crystals (<100 μm) were analyzed using both SIMS and LA-ICP-MS, with a spatial resolution of 15 to 50 μm. Rhenium, Au and Pd were all found to be incompatible in Cr-rich spinel (DResp/melt = 0.0012-0.21, DAusp/melt = 0.076, DPdsp/melt = 0.14), whereas Rh, Ru and Ir were all found to be highly compatible (DRhsp/melt = 41-530, DRusp/melt = 76-1143, DIrsp/melt = 5-22000). Rhenium, Pd, Au and Ru were all found to be incompatible in olivine (DReoliv/melt = 0.017-0.073, DPdoliv/melt = 0.12, DAuoliv/melt = 0.12, DRuoliv/melt = 0.23), Re is incompatible in orthopyroxene and clinopyroxene (DReopx/melt = 0.013, DRecpx/melt = 0.18-0.21), and Pt is compatible in clinopyroxene (DPtcpx/melt = 1.5). The results are compared to and combined with previous work on HSE partitioning among spinel-structured oxides, and applied to some natural magmatic suites to demonstrate consistency.  相似文献   

18.
A new method for the radiogenic isotope (U–Th–Pa–Ra, Sr, Nd, Hf) analysis of the soluble and insoluble components found within ice cores is presented. Melting experiments with rock standards in the presence of EDTA indicate that carbonates, as well as silicates, can be buffered sufficiently to preclude dissolution. The use of EDTA allows adsorbing species, such as Th and Hf, to remain in solution during melting thus fully separating the dust (insoluble) and sea salt (soluble) components of the ice after filtration. A new elemental separation scheme for low sample masses, less than 5 mg solid material, utilizes 4 primary ion exchange columns and two “clean-up” columns to fully isolate U, Th, Pa, Ra, Sr, Nd, and Hf while maintaining high yields. Elution schemes measured for USGS rock standards and a Chinese loess are presented to provide a comparison for variable matrix compositions. Mass spectrometer techniques were modified to measure small aliquots of the standards, equivalent to the amounts found in ice core samples, 10 ng and less. A MC-ICPMS was employed for the measurement of U, Th, Pa, Ra, and Hf; results of the experiments show that with ion yields up to 1%, rock standards have errors for 234U/238U of 1%, 230Th/232Th of 1.5%, [228Ra] of 9%, and 176Hf/177Hf of 100 ppm. MC-TIMS measurements of Sr and Nd show similar errors for small sample sizes: 87Sr/86Sr of 50 ppm and 143Nd/144Nd of 80 ppm. This new analytical method increases the number of possible tracers measured from a single sample, reducing separation times and sample consumption, as well as providing the addition of a radiometric clock, U-series, to the traditional suite of isotopic tracers, Sr, Nd, and Hf.  相似文献   

19.
The occurrence of high-pressure (HP) blueschists within the central Qiangtang terrane of northern Tibet has a significant bearing on plate-suturing processes. In order to contribute to the ongoing debate on whether the central Qiangtang metamorphic belt represents an in situ suture within the Qiangtang terrane, we examined lawsonite- and glaucophane-bearing blueschists from the northwest Qiangtang area (84° 10′–85° 30′ E, 34°10′–34° 45′ N). All studied rocks are metapelites, metasandstones, or metabasalts, characterized by lawsonite + glaucophane + phengite, lawsonite + glaucophane + epidote + albite + quartz, or glaucophane + phengite + quartz assemblages. The meta-mafic rocks contain very high TiO2 and low Al2O3 contents. They are typified by abundant ferromagnesian trace elements, and an absence of Eu anomalies and Nb–Ta deletions; all the above features indicate that these mafic rocks represent oceanic island basalt (OIB) protoliths. Most of the metasediments contain high SiO2, moderate Al2O3 + K2O, and low TiO2 + Na2O. They display high CIA (chemical index of alteration) values (74% ± 5%) and distinctly negative Eu anomalies (Eu/Eu* = 0.64 ± 0.05). This, along with their high field strength elemental characteristics, indicates that they were deposited in a passive continental margin environment, intercalated with OIB-type basalts. We estimate the peak metamorphic conditions for these blueschists as T = 330–415°C and P = 9–11.5 kbar. This HP event occurred at ca. 242 Ma, indicated by a well-defined 40Ar/39Ar plateau age for glaucophane. Retrograde metamorphism occurred at T = 280–370°C, P = 6.5–9.5 kbar, t = ca. 207 Ma (40Ar/39Ar dating of phengite). Therefore, a cold subduction (geotherm ~8°C/km) attended the passive continental margin during the Triassic when the eastern Qiangtang collided with the western Qiangtang. The northwest Qiangtang HP metamorphic belt is an extension of the central Qiangtang metamorphic belt that defines the suture between eastern and western Qiangtang, and indicates an anticlockwise, diachronous closure of the Shuanghu Palaeo-Tethys.  相似文献   

20.
Summary Thermal metamorphism and later retrogression of low metamorphic grade garnet-bearing pelites has produced diverse patterns of garnet zoning. In the narrow thermal aureole, fibrolite, staurolite and biotite are present and commonly are retrogressed to assemblages containing sericite, chlorite and chloritoid. In the thermal aureole, garnet contains inclusions of quartz, biotite, fibrolite, ilmenite, chlorite and muscovite and underwent relatively rapid growth from pre-existing low to medium grade regionally metamorphosed rocks. Garnet was armoured from breakdown reactions by fibrolite which nucleated on garnet. The grain size of poikiloblastic garnet, the volume of zones of inclusions in the garnet and the size of the inclusions all decrease with increasing distance from the contact. In the thermal aureole, normal compositional zoning is common and rare reversezoned garnets probably result from the partitioning of Mn from ilmenite during thermal metamorphism. Garnet grains in the thermal aureole have a peripheral enrichment in Mn in the outermost 200 m as a result of diffusion of Fe from garnet into the matrix during incipient retrogression. Coarse retrograde garnet in schists is unzoned and richer in Fe than the normal- and reverse-zoned prograde garnet in hornfelses suggesting that relatively large scale local diffusion in retrograde schists was operative during retrogression but not effective enough to completely remove the relic prograde zoned garnets in the hornfelses.
Polymetamorphe normal-, invers- und nicht-zonierte Granate aus dem Kontakthof von Darakhd-Bid, Mashhad, Iran
Zusammenfassung Thermometamorphose und spätere retrograde Metamorphose bei niederen P/T-Bedingungen hat eine Vielfalt von Zonar-Texturen in Granaten pelitischer Gesteine erzeugt. In dem schmalen Kontakthof kommen Fibrolit, Staurolit und Biotit vor, die häufig retrograd zu Paragenesen mit Serizit, Chlorit, und Chloritoid umgewandelt wurden. Granate in der Aureole enthalten Einschlüsse von Quarz, Biotit, Fibrolit, Ilmenit, Chlorit und Muskovit; sie sind durch relativ rasches Wachstum in präexistierenden niedrig- bis mittelgradigen Metamorphiten charakterisiert. Fibrolit-Ränder schützten den Granat vor Zerfallsreaktionen. Die Korngröße poikiloblastischer Granate, das Volumen einschlußreicher Zonen im Granat und die Größe der Einschlüsse nehmen mit zunehmender Entfernung vom Kontakt ab. Im Bereich des Kontakthofes ist normaler Zonenbau in Granaten verbreitet; seltene invers-zonierte Granate gehen wahrscheinlich auf das Freiwerden von Mn aus Ilmenit während der Metamorphose zurück. Granatkörner im Kontakthof zeigen randliche Mangananreicherungen in den äußeren 200 m als Resultat der Diffusion von Fe aus Granat in die Matrix während beginnender retrograder Metamorphose. Grobkörniger retrograder Granat in den Schiefern ist nicht zoniert und enthält höhere Eisengehalte als die normalen und invers-zonierten prograden Granate in Hornfelsen. Dies weist darauf hin, daß in den retrograder Metamorphose ausgesetzten Schiefern Diffusion in relativ großem Ausmaße stattgefunden hat; diese war jedoch nicht ausreichend, um sämtliche prograden zonierten Relikt-Granate in den Hornfelsen zu entfernen.


With 9 Figures

Text of paper presented at the 26th International Geological Congress, Paris, July 1980.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号