首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
IPCC第六次评估报告第一工作组报告第九章综合评估了与海平面相关的最新监测和数值模拟结果,指出目前(2006—2018年)的海平面上升速率处于加速状态(3.7 mm/a),并会在未来持续上升,且呈现不可逆的趋势。其中低排放情景(SSP1-1.9)和高排放情景(SSP5-8.5)下,到2050年,预估全球平均海平面(GMSL)分别上升0.15~0.23 m和0.20~0.30 m;到2100年,预估GMSL分别上升0.28~0.55 m和0.63~1.02 m。南极冰盖不稳定性是影响未来海平面上升预估的最大不确定性来源之一。区域海平面变化是影响沿海极端静水位的重要因素。  相似文献   

2.
对长江口海平面上升动态及其对沿海潮汐特性的影响进行了简析。结合长江口崇明三岛地区除涝安全面临海平面上升的影响和威胁,分别建立了基于海平面上升的上海市崇明三岛水系一维平原感潮河网水动力模型,深入开展了海平面上升对三岛地区除涝安全影响的模拟研究。结果显示,至2030年,长江口海平面上升10~16 cm,崇明三岛片区的面平均除涝最高水位、局部除涝最高水位均呈上升趋势,其中,崇明岛片受影响最大,对应水位将分别上升3~5 cm、4~6 cm;长兴岛片受影响次之,对应水位将分别上升3~4 cm、3~5 cm;横沙岛片受影响相对最小,对应水位均将上升1~2 cm;长江口海平面上升对崇明三岛的除涝安全影响在可控范围内。  相似文献   

3.
2030年上海地区相对海平面变化趋势的研究和预测   总被引:1,自引:0,他引:1  
从全球气候变化区域响应角度,依据1912-2000年吴淞验潮站年平均潮位资料,构建灰色线性回归组合模型,并将其与最小二乘法和小波变换相结合,分析以吴淞为代表的上海绝对海平面长期变化趋势和周期变化规律。由此预测2030年上海绝对海平面相对2011年的上升值为4 cm,结合已公布的构造沉降和城市地面沉降、流域水土保持和大型水利工程及人工挖沙导致的河口河槽冲刷、河口围海造地和深水航道及跨江跨海大桥导致水位抬升等叠加效应及其变化趋势,预测2030年上海市相对海平面上升10~16 cm,陆地海平面上升有7个风险分区。  相似文献   

4.
The sea level history of the northern Gulf of Mexico during recent geologic time has closely followed global eustatic sea level change. Regional effects due to tectonics and glacio-isostasy have been minimal. Over the past several million years the northern Gulf coast, like most stable coastal regions of the globe, has experienced major swings of sea level below and above present level, accompanied by major shifts in shoreline position. During advances of the northern hemisphere ice sheets, sea level dropped by more than 100 m, extending the shoreline in places more than 100 km onto the shelf. For much of the period since the last glacial maximum (LGM), 20,000 years ago, the region has seen rates of sea level rise far in excess of those experienced during the period represented by long-term tide gauges. The regional tide gauge record reveals that sea level has been rising at about 2 mm/year for the past century, while the average rate of rise since the LGM has been 6 mm/year, with some periods of abrupt rise exceeding 40 mm/year. During times of abrupt rise, Gulf of Mexico shorelines were drowned in place and overstepped. The relative stability of modern coastal systems is due primarily to stabilization of sea level approximately 6,000 years ago, resulting in the slow rates of rise experienced during historic time. Recent model projections of sea level rise over the next century and beyond may move northern Gulf coastal environments into a new equilibrium regime, more similar to that experienced during the deglaciation than that which has existed during historic time.  相似文献   

5.
珠江口近15年海平面变化特点及其与强咸潮发生的关系   总被引:1,自引:1,他引:0  
通过对珠江口30多年相对海平面和近15年绝对海平面变化的研究,比较1992年12月~2008年12月南海卫星观测和珠江口验潮站观测的海平面变化趋势,认为珠江口的相对海平面(RSL)上升最主要原因是全球气候变暖、海平面上升所致;通过研究29个冬季各月西、北江冬季径流量、海平面、表层盐度的变化趋势,以及强咸潮月份的径流、海平面、盐度的对应关系,得出海平面上升是加大咸潮影响的重要因素。  相似文献   

6.
Global warming may result in substantial sea level rise and more intense hurricanes over the next century, leading to more severe coastal flooding. Here, observed climate and sea level trends over the last century (c. 1900s to 2000s) are used to provide insight regarding future coastal inundation trends. The actual impacts of Hurricane Katrina (2005) in New Orleans are compared with the impacts of a similar hypothetical hurricane occurring c. 1900. Estimated regional sea level rise since 1900 of 0.75 m, which contains a dominant land subsidence contribution (0.57 m), serves as a ‘prototype’ for future climate-change induced sea level rise in other regions. Landform conditions c. 1900 were estimated by changing frictional resistance based on expected additional wetlands at lower sea levels. Surge simulations suggest that flood elevations would have been 15 to 60 % lower c. 1900 than the conditions observed in 2005. This drastic change suggests that significantly more flood damage occurred in 2005 than would have occurred if sea level and climate conditions had been like those c. 1900. We further show that, in New Orleans, sea level rise dominates surge-induced flooding changes, not only by increasing mean sea level, but also by leading to decreased wetland area. Together, these effects enable larger surges. Projecting forward, future global sea level changes of the magnitude examined here are expected to lead to increased flooding in coastal regions, even if the storm climate is unchanged. Such flooding increases in densely populated areas would presumably lead to more widespread destruction.  相似文献   

7.
Sea level has been rising for the past century, and coastal residents of the Earth will want to understand and predict future sea level changes. In this study we present sea level changes from new simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model from 1950 to 2099. The free surface, mass conserving ocean model leads to a straightforward calculation of these changes. Using observed levels of greenhouse gases between 1950 and 1990 and a compounded 0.5% annual increase in CO2 after 1990, model projections show that global sea level measured from 1950 will rise by 61?mm in the year 2000, by 212?mm in 2050, and by 408?mm in 2089. By 2089, 64% of the global sea level rise will be due to thermal expansion and 36% will be due to ocean mass changes. The Arctic Ocean will show a greater than average sea level rise, while the Antarctic circumpolar region will show a smaller rise in agreement with other models. Model results are also compared with observed sea level changes during the past 40 years at 12 coastal stations around the world.  相似文献   

8.
Abstract

Relative sea‐level rise along the Atlantic coast of North America is observed to be about 30 cm/century. No more than half of this rise can be explained by eustatic changes. It is improbable that the remainder is explicable by steric changes. It is therefore almost certainly produced by a systematic subsidence of that coast. The required rate of at least 15 cm/ century is very large by long‐term geologic standards. However, it is comparable with rates measured in relevelling programs, and we must recognize that we live in extraordinary times geologically in that ice‐ages are unusual, and we are in a very warm portion of the present ice‐age. If at least half of the observed relative sea‐level rise is caused by subsidence, it seems reasonable to suppose that nearly all, except for the effects of the observed melting of small glaciers, is so caused. Sea‐level rise is so variable in other parts of the world that there also it is better explained by crustal movements than by eustatic sea‐level rise.

The doubt that these considerations place on the usual interpretation of past sea‐level rise extends to consideration of a possible future rise brought ori by climate change. It is uncertainty that has clearly increased, not eustatic sea‐level.  相似文献   

9.
We synthesize existing evidence on the ecological history of the Florida Everglades since its inception ??7?ka (calibrated kiloannum) and evaluate the relative impacts of sea level rise, climate variability, and human alteration of Everglades hydrology on wetland plant communities. Initial freshwater peat accumulation began between 6 and 7?ka on the platform underlying modern Florida Bay when sea level was ??6.2?m below its current position. By 5?ka, sawgrass and waterlily peats covered the area bounded by Lake Okeechobee to the north and the Florida Keys to the south. Slower rates of relative sea level rise ??3?ka stabilized the south Florida coastline and initiated transitions from freshwater to mangrove peats near the coast. Hydrologic changes in freshwater marshes also are indicated ??3?ka. During the last ??2?ka, the Everglades wetland was affected by a series of hydrologic fluctuations related to regional to global-scale fluctuations in climate and sea level. Pollen evidence indicates that regional-scale droughts lasting two to four centuries occurred ??1?ka and ??0.4?ka, altering wetland community composition and triggering development of characteristic Everglades habitats such as sawgrass ridges and tree islands. Intercalation of mangrove peats with estuarine muds ??1?ka indicates a temporary slowing or stillstand of sea level. Although sustained droughts and Holocene sea level rise played large roles in structuring the greater Everglades ecosystem, twentieth century reductions in freshwater flow, compartmentalization of the wetland, and accelerated rates of sea level rise had unprecedented impacts on oxidation and subsidence of organic soils, changes/loss of key Everglades habitats, and altered distribution of coastal vegetation.  相似文献   

10.
Sea level change predicted by the CMIP5 atmosphere–ocean general circulation models (AOGCMs) is not spatially homogeneous. In particular, the sea level change in the North Atlantic is usually characterised by a meridional dipole pattern with higher sea level rise north of 40°N and lower to the south. The spread among models is also high in that region. Here we evaluate the role of surface buoyancy fluxes by carrying out simulations with the FAMOUS low-resolution AOGCM forced by surface freshwater and heat flux changes from CO2-forced climate change experiments with CMIP5 AOGCMs, and by a standard idealised surface freshwater flux applied in the North Atlantic. Both kinds of buoyancy flux change lead to the formation of the sea level dipole pattern, although the effect of the heat flux has a greater magnitude, and is the main cause of the spread of results among the CMIP5 models. By using passive tracers in FAMOUS to distinguish between additional and redistributed buoyancy, we show that the enhanced sea level rise north of 40°N is mainly due to the direct steric effect (the reduction of sea water density) caused by adding heat or freshwater locally. The surface buoyancy forcing also causes a weakening of the Atlantic meridional overturning circulation, and the consequent reduction of the northward ocean heat transport imposes a negative tendency on sea level rise, producing the reduced rise south of 40°N. However, unlike previous authors, we find that this indirect effect of buoyancy forcing is generally less important than the direct one, except in a narrow band along the east coast of the US, where it plays a major role and leads to sea level rise, as found by previous authors.  相似文献   

11.
近50年全球气候变暖对珠江口海平面变化趋势的影响   总被引:15,自引:12,他引:3  
根据1957~2006年全球温度和珠江口验潮站平均潮位资料,分析全球气候变暖与珠江口平均海平面上升的关系,并对2030年珠江口海平面上升幅度作出预测。结果表明,近50年来珠江口海平面的上升趋势与全球气候变暖存在显著的正相关关系,预测2030年(前后)珠江口平均海平面比1980~1999年高13~17cm。  相似文献   

12.
Tens of millions of people around the world are already exposed to coastal flooding from tropical cyclones. Global warming has the potential to increase hurricane flooding, both by hurricane intensification and by sea level rise. In this paper, the impact of hurricane intensification and sea level rise are evaluated using hydrodynamic surge models and by considering the future climate projections of the Intergovernmental Panel on Climate Change. For the Corpus Christi, Texas, United States study region, mean projections indicate hurricane flood elevation (meteorologically generated storm surge plus sea level rise) will, on average, rise by 0.3 m by the 2030s and by 0.8 m by the 2080s. For catastrophic-type hurricane surge events, flood elevations are projected to rise by as much as 0.5 m and 1.8 m by the 2030s and 2080s, respectively.  相似文献   

13.
The risk of sea level rise   总被引:3,自引:1,他引:2  
The United Nations Framework Convention on Climate Change requires nations to implement measures for adapting to rising sea level and other effects of changing climate. To decide upon an appropriate response, coastal planners and engineers must weigh the cost of these measures against the likely cost of failing to prepare, which depends on the probability of the sea rising a particular amount.This study estimates such a probability distribution, using models employed by previous assessments, as well as the subjective assessments of twenty climate and glaciology reviewers about the values of particular model coefficients. The reviewer assumptions imply a 50 percent chance that the average global temperature will rise 2 °C, as well as a 5 percent chance that temperatures will rise 4.7 °C by 2100. The resulting impact of climate change on sea level has a 50 percent chance of exceeding 34 cm and a 1% chance of exceeding one meter by the year 2100, as well as a 3 percent chance of a 2 meter rise and a 1 percent chance of a 4 meter rise by the year 2200.The models and assumptions employed by this study suggest that greenhouse gases have contributed 0.5 mm/yr to sea level over the last century. Tidal gauges suggest that sea level is rising about 1.8 mm/yr worldwide, and 2.5–3.0 mm/yr along most of the U.S. Coast. It is reasonable to expect that sea level in most locations will continue to rise more rapidly than the contribution from climate change alone.We provide a set of normalized projections which express the extent to which climate change is likely to accelerate the rate of sea level rise. Those projections suggest that there is a 65 percent chance that sea level will rise 1 mm/yr more rapidly in the next 30 years than it has been rising in the last century. Assuming that nonclimatic factors do not change, there is a 50 percent chance that global sea level will rise 45 cm, and a 1 percent chance of a 112 cm rise by the year 2100; the corresponding estimates for New York City are 55 and 122 cm.Climate change impact assessments concerning agriculture, forests, water resources, and other noncoastal resources should also employ probability-based projections of regional climate change. Results from general circulation models usually provide neither the most likely scenario nor the full range of possible outcomes; probabilistic projections do convey this information. Moreover, probabilistic projections can make use of all the available knowledge, including the views of skeptics; the opinions of those who study ice cores, fossils, and other empirical evidence; and the insights of climate modelers, which may be as useful as the model results themselves.The U.S. Government right to retain a non-exclusive royalty-free license in and to any copyright is acknowledged.  相似文献   

14.
Hsieh  William W.  Bryan  Kirk 《Climate Dynamics》1996,12(8):535-544
Future sea level rise from thermal expansion of the World Ocean due to global warming has been explored in several recent studies using coupled ocean-atmosphere models. These coupled models show that the heat input by the model atmosphere to the ocean in such an event could be quite non-uniform in different areas of the ocean. One of the most significant effects predicted by some of the models is a weakening of the thermohaline circulation, which normally transports heat poleward. Since the greatest heat input from enhanced greenhouse warming is in the higher latitudes, a weakening of the poleward heat transport effectively redistributes the heat anomaly and the associated sea level rise to lower latitudes. In this study, the mechanism of ocean circulation spindown and heat redistribution was studied in the context of a much simpler, linearized shallow water model. Although the model is much simpler than the three-dimensional ocean circulation models used in the coupled model experiments, and neglects several important physical effects, it has a nearly 10-fold increase in horizontal resolution and clearer dynamical interpretations. The results indicated that advanced signals of sea level rise propagated rapidly through the action of Kelvin and Rossby waves, but the full adjustment toward a more uniform sea level rise took place much more slowly. Long time scales were required to redistribute mass through narrow currents trapped along coasts and the equatorial wave guide. For realistic greenhouse warming, the model showed why the sea level rise due to ocean heating could be far from uniform over the globe and hence difficult to estimate from coastal tide gauge stations.  相似文献   

15.
This study illustrates a methodology to assess the economic impacts of climate change at a city scale and benefits of adaptation, taking the case of sea level rise and storm surge risk in the city of Copenhagen, capital of Denmark. The approach is a simplified catastrophe risk assessment, to calculate the direct costs of storm surges under scenarios of sea level rise, coupled to an economic input–output (IO) model. The output is a risk assessment of the direct and indirect economic impacts of storm surge under climate change, including, for example, production and job losses and reconstruction duration, and the benefits of investment in upgraded sea defences. The simplified catastrophe risk assessment entails a statistical analysis of storm surge characteristics, geographical-information analysis of population and asset exposure combined with aggregated vulnerability information. For the city of Copenhagen, it is found that in absence of adaptation, sea level rise would significantly increase flood risks. Results call for the introduction of adaptation in long-term urban planning, as one part of a comprehensive strategy to manage the implications of climate change in the city. Mitigation policies can also aid adaptation by limiting the pace of future sea level rise.  相似文献   

16.
The sea level variability in the Northwestern Pacific based on the observations at tide-gage stations of JASL system is considered. The long-term seasonal variations of the sea level at these stations are presented and the climatic trends, variability range, and standard deviations of monthly mean values of the sea level from the long-term seasonal values are computed. The frequency of the sea level exceeding relative to the moving average with the shift of 30 days is computed. It is shown that, contrary to general opinion, the frequency of the sea level exceeding relative to the moving average in the Northwestern Pacific does not increase on the whole under conditions of the climate warming and sea level rise.  相似文献   

17.
Monitoring sea level changes   总被引:3,自引:0,他引:3  
Future sea level rise arouses concern because of potentially deleterious impacts to coastal regions. These will stem not only from the loss of land through inundation and erosion, but also from increased frequency of storm floods, with a rising base level, even with no change in storm climatology, and from saltwater intrusion and greater amounts of waterlogging. Current sea level trends are important in formulating an accurate baseline for future projections. Sea level, furthermore, is an important parameter which integrates a number of oceanic and atmospheric processes. The ocean surface demonstrates considerable variability on diurnal, seasonal, and interannual time scales, induced by winds, storm waves, coastal upwelling, and geostrophic currents. Secular trends in sea level arise from changes in global mean temperature and also from crustal deformation on local to regional scales. The challenge facing researchers is how best to extract the climate signal from this noise.This paper re-examines recent estimates of sea level rise, discusses causes of variability in the sea level records, and describes methods employed to filter out some of these contaminating signals. Evidence for trends in long-term sea level records and in extreme events is investigated. Application of satellite geodesy to sea level research is briefly reviewed.  相似文献   

18.
This paper introduces and summarizes a series of articles on the potential impacts of sea level rise on Florida??s natural and human communities and what might be done to reduce the severity of those impacts. Most of the papers in this special issue of Climatic Change were developed from presentations at a symposium held at Archbold Biological Station in January 2010, sponsored by the Florida Institute for Conservation Science. Symposium participants agreed that adaptation to sea level rise for the benefit of human communities should be planned in concert with adaptation to reduce vulnerability and impacts to natural communities and native species. The papers in this special issue discuss both of these categories of impacts and adaptation options. In this introductory paper, I place the subject in context by noting that that the literature in conservation biology related to climate change has been concerned largely about increasing temperatures and reduced moisture availability, rather than about sea level rise. The latter, however, is the most immediate and among the most severe impacts of global warming in low-lying regions such as Florida. I then review the content of this special issue by summarizing and interpreting the following 10 papers. I conclude with a review of the recommendations for research and policy that were developed from group discussions at the Archbold symposium. The main lesson that emerges from this volume is that sea level rise, combined with human population growth, urban development in coastal areas, and landscape fragmentation, poses an enormous threat to human and natural well-being in Florida. How Floridians respond to sea level rise will offer lessons, for better or worse, for other low-lying regions worldwide.  相似文献   

19.
《大气与海洋》2013,51(4):292-298
Abstract

It is well known from observations by altimetric satellites (predominantly TOPEX/Poseidon and Jason‐1) that global sea level is rising. What is less well known is exactly how the observed sea level rise is partitioned between a steric contribution (sea level rising because of changes in ambient temperature and salinity) and a contribution arising from the addition of new water mass to the oceans. Strictly speaking, such a separation is not possible because of the non‐linearity in the equation of state for sea water, but in practice the non‐linearities are sufficiently small to allow this separation as a very good first approximation.

A careful comparison of the World Ocean Circulation Experiment (WOCE) one‐time survey with recent observations by the Argo array indicate a steric component to sea level rise of 2.2 mm y–1 between the early 1990s and 2006 to 2008. This is a significantly larger rise rate than previously estimated and, along with recent estimates of melt rate from ice sheets, is in much closer agreement with the total rise rate as reported by altimetric satellites, 3.2 ± 0.4 mm y–1 over this period.  相似文献   

20.
We use a physically plausible four parameter linear response equation to relate 2,000 years of global temperatures and sea level. We estimate likelihood distributions of equation parameters using Monte Carlo inversion, which then allows visualization of past and future sea level scenarios. The model has good predictive power when calibrated on the pre-1990 period and validated against the high rates of sea level rise from the satellite altimetry. Future sea level is projected from intergovernmental panel on climate change (IPCC) temperature scenarios and past sea level from established multi-proxy reconstructions assuming that the established relationship between temperature and sea level holds from 200 to 2100 ad. Over the last 2,000 years minimum sea level (−19 to −26 cm) occurred around 1730 ad, maximum sea level (12–21 cm) around 1150 ad. Sea level 2090–2099 is projected to be 0.9 to 1.3 m for the A1B scenario, with low probability of the rise being within IPCC confidence limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号