共查询到20条相似文献,搜索用时 15 毫秒
1.
Antonio Herrero Gaspar Alonso-Gavilán Juan Ramón Colmenero 《Sedimentary Geology》2010,223(3-4):235-264
The Cenozoic record of the north-western domain of the Duero basin is articulated at the surface through a set of continental depositional sequences called, from base to top, the Vegaquemada sequence, the Candanedo sequence, and the Barrillos sequence. These depositional sequences were deposited in continental sedimentary environments. The deposition of the first sequence occurred through a fluvial system with floodplains cut by low-sinuosity channels. The Vegaquemada sequence was developed between the Middle Eocene and the Early Agenian. The second sequence was formed by a set of highly efficient transport alluvial fans that evolved laterally towards fluvial systems with low-sinuosity fluvial channels and an extensive floodplain, where several types of palaeosols were formed. This sequence developed between the Early Agenian and the Late Vallesian. The third unit–the Barrillos sequence (between the Late Vallesian and the Turolian/Ruscinian transition), was generated by a set of highly efficient transport alluvial fans dominated by low-sinuosity fluvial channels.In subsurface geology, seismic and well data are used to rebuild the stratigraphic architecture. The two basal depositional sequences can be identified with two seismic units: the Palaeogene Seismic Unit (PgSU) and the Neogene Seismic Unit (NgSU), respectively. In the present work, we obtained the isovelocity, isochron, and isobath maps for the top and base of the two Cenozoic units. The Palaeozoic (PzSU) and Mesozoic (MzSU) seismic units are found under these two units. Through study of the logs of the various boreholes, it was only possible to analyse the upper 700 m of the Candanedo Sequence (NgSU), without encompassing the total thickness of the unit. Several middle-order sequences were differentiated, in general showing a sequential fining-upwards evolutionary character. Additionally, for the boreholes analysed two main types of electrofacies were identified, both representing fluvial channels and floodplain deposits.The north-western domain of the Duero basin is interpreted to have been formed in response to the tectonic uplifting of the Cantabrian Mountains since Middle-Eocene times. Integration of the data concerning the surface and subsurface geology in this domain reveals that this basin edge behaved as a foreland basin during Cenozoic stages. The foredeep, with a depth of 2800 m, is oriented east–west and has a sediment thickness of up to 3500 m. The forebulge is located in the southwestern zone and represents an area of basement uplifting in which a minimum thickness of materials from the Cenozoic depositional sequences has accumulated. 相似文献
2.
苟宗海 《沉积与特提斯地质》2000,20(4):79-88
四川汶川、都江堰、崇州、大邑毗邻地区的中新生代陆相地层发育良好,并呈NE向展布。笔者在进行1:5万“三江幅”和“万家坪幅”区域地质调查时,对这一地区的沉积相作了初步调研,根据前陆盆地的沉积物充填序列和沉积界面的接触关系、相转换面及等时界面等特征,将前陆盆地沉积相划分为冲积扇相、河流相、湖泊相和三角洲相四种类型6个构造层序。 相似文献
3.
龙门山前陆盆地深层海相碳酸盐岩储层地震预测研究 总被引:1,自引:1,他引:1
本文论及龙门山前陆盆地深层海相碳酸盐储层地震预测的岩石物理学基础与有效的预测方法技术问题。龙门山前陆盆地深层震旦系至中三叠统海相沉积以碳酸盐岩为主,厚4000~7000m, 天然气资源蕴藏量巨大而探明率低, 油气勘探的关键在于寻找优质储层。基于对地震资料和井资料的分析,认为该区段的储层主要是生物礁滩相白云岩和发育构造裂缝的碳酸盐岩。依据井资料,总结介绍了该区三叠系马鞍塘组、雷口坡组和嘉陵江组地层与碳酸盐岩储层的地震波速度、密度、电阻率等物性参数特征。在分析介绍储层地震预测原理方法与碳酸盐岩储层地震预测问题的基础上,介绍了作者研究提出的地震纹分析方法的概念、原理及其在含气储层检测中确定的应用效果。 相似文献
4.
Intracontinental subduction of the South China Block below the North China Block in the Late Triassic resulted in formation of the transpressional Sichuan foreland basin on the South China Block. The Upper Triassic Xujiahe Formation was deposited in this basin and consists of an eastward-tapering wedge of predominantly continental siliciclastic sedimentary rocks that are up to 3.5 km thick in the western foredeep depocenter and thin onto the forebulge and into backbulge depocenters.Five facies associations (A–E) make up the Xujiahe Formation and these are interpreted, respectively, as alluvial fan, transverse and longitudinal braided river, meandering river, overbank or shallow lacustrine, and deltaic deposits. This study establishes a sequence stratigraphic framework for the Xujiahe Formation which is subdivided into four sequences (SQ1, 2, 3 and 4). Sequence boundaries are recognized on the basis of facies-tract dislocations and associated fluvial rejuvenation and incision, and systems tracts are identified based on their constituent facies associations and changes in architectural style and sediment body geometries. Typical sequences consist of early to late transgressive systems tract deposits related to a progressive increase in accommodation and represented by Facies Associations A, B and C that grade upwards into Facies Association D. Regionally extensive and vertically stacked coal seams define maximum accommodation and are overlain by early highstand systems tract deposits represented by Facies Associations D, E and C. Late highstand systems tract deposits are rare because of erosion below sequence boundaries. Sequence development in the Xujiahe Formation is attributed to active and quiescent phases of thrust-loading events and is closely related to the tectonic evolution of the basin. The Sichuan Basin experienced three periods of thrust loading and lithospheric flexure (SQ1, lower SQ2 and SQ3), two periods of stress relaxation and basin widening (upper SQ 2 and SQ3) and one phase of isostatic rebound (SQ4). Paleogeographic reconstruction of the Sichuan Basin in the Late Triassic indicates that the Longmen Mountains to the west, consisting of metamorphic, sedimentary and pre-Neoproterozoic basement granitoid rocks, was the major source of sediment to the foredeep depocenter. Subordinate sediment sources were the Xuefeng Mountains to the east to backbulge depocenters, and the Micang Mountains to the northwest during the late history of the basin. This study has demonstrated the viability of sequence stratigraphic analysis in continental successions in a foreland basin, and the influence of thrust loading on sequence development. 相似文献
5.
Christian Brandes Carolin Schmidt David Colin Tanner Jutta Winsemann 《International Journal of Earth Sciences》2013,102(8):2239-2254
Analysing the paleostress field in sedimentary basins is important for understanding tectonic processes and the planning of drilling campaigns. The Subhercynian Basin of northern Germany is a perfect natural laboratory to study the paleostress field in a developing foreland basin. The simple layer-cake geometry of the basin-fill is dominated by several piercing and non-piercing salt structures. We derived the paleostress field from the orientation of fracture sets, faults, slickensides and stylolites. On a regional scale, the basin-fill is characterized by a horizontal compressional paleostress vector that is mainly NNE-SSW-oriented, which reflects the Late Cretaceous inversion phase in Central Europe. We show that the local paleostress field is distinctly perturbated due to the salt structures. Along the edge of the salt pillows, the maximum horizontal paleostress vector is deflected by up to 90° from the regional trend. In the case of the Elm salt pillow, it forms a radial pattern. Restoration of balanced cross-sections demonstrates at least 9 % of the shortening of the north-western part of the Subhercynian Basin was achieved by folding. The salt structures in the north-western Subhercynian Basin are the result of varying stress conditions. Initial extension in the Triassic caused first salt movements that prevailed during the Jurassic and Early Cretaceous. Most important is the Late Cretaceous contractional phase that shortened the diapirs and led to the formation of the salt pillows between diapirs due to detachment folding. We derive four main controlling factors for such salt-dominated contractional basins: (1) the wedge-shape basin-fill is the product of the dynamic load at the southern margin of the basin, (2) a basal salt layer fed the diapirs and acted as a detachment horizon during the later shortening, (3) detachment folding was the dominating deformation mechanism during contraction, and (4) the pre-existing diapirs controlled the position of the detachment folds. 相似文献
6.
This paper develops further the case for a foreland basin origin of South Westland Basin, located adjacent to the Southern Alps mountain belt. Geohistory analyses show Middle Miocene initiation of subsidence in the basin, with marked increases at 5–6 Ma. Five seismic reflection horizons, including basement, Middle Miocene (top Awarua Limestone), top Miocene, mid-Pliocene (PPB) and mid-Pleistocene (PPA) have been mapped through the grid of seismic data. A series of five back-stripped structure contour maps taken together with five isopach maps show that prior to the Middle Miocene, subsidence and sedimentation occurred mainly along the rifted continental margin of the Challenger Plateau facing the Tasman Sea; subsequently it shifted to a foredeep trending parallel to the Southern Alps and located northwest of them. Through the Late Miocene–Recent this depocentre has progressively widened, and the loci of thickest sediment accumulation have moved northwestward, most prominently during the Late Pliocene and Pleistocene with the progradation of a shelf–slope complex. At the northern end of the basin the shelf–slope break is currently located over the forebulge, which appears not to have migrated significantly, probably because the mountain belt is not advancing significantly northwestwards. Modelling of the lithospheric flexure of the basement surface normal to the trend of the basin establishes values of 3.1 to 9.8×1020 N m for the flexural rigidity of the Australia Plate. This is at the very low end of rigidities for plates, and 1–2 orders of magnitude less than for the Australia Plate beneath the Taranaki Basin. Maps of tectonic subsidence where the influence of sediment loading is removed also clearly identify the source of the loading as lying within or beneath the mountain belt. The basin fill shows a stratigraphic architecture typical of underfilled ancient peripheral foreland basins. This comprises transgressive (basal unconformity, thin limestone, slope-depth mudstone, flysch sequence) and regressive (prograding shelf–slope complex followed by molasse deposits) components. In addition the inner margin of the basin has been inverted as a result of becoming involved in the mountain building, as revealed earlier by fission track thermochronological data. The timing and degree of inversion fits well with the geometrical and stratigraphic development of the basin. That the inversion zone and the coastal plain underlain by molasse deposits are narrow, and most of the basin is beneath the sea, highlights this as an underfilled active foreland basin. The basin is geodynamically part of the Southern Alps collision zone. 相似文献
7.
Seismic stratigraphy and development of Avon canyon in Benin (Dahomey) basin, southwestern Nigeria 总被引:2,自引:0,他引:2
Interpretation of a grid of high resolution seismic profiles from the offshore eastern part of the Benin (Dahomey) basin in southwestern Nigeria area permitted the identification of cyclic events of cut and fill associated with the Avon canyon. Seismic stratigraphic analysis was carried out to evaluate the canyon morphology, origin and evolution. At least three generations of ancient submarine canyons and a newly formed submarine canyon have been identified. Seismic reflection parameters of the ancient canyons are characterized by transparent to slightly transparent, continuous to slightly discontinuous, high to moderate amplitude and parallel to sub-parallel reflections. Locally, high amplitude and chaotic reflections were observed. The reflection configurations consist of regular oblique, chaotic oblique, progradational and parallel to sub-parallel types. These seismic reflection characteristics are probably due to variable sedimentation processes within the canyons, which were affected by mass wasting. Canyon morphological features include step-wise and spoon-shaped wall development, deep valley incision, a V-shaped valley, similar orientation in the southeast direction, and simple to complex erosion features in the axial floor. The canyons have a composite origin, caused partly by lowering of the sea level probably associated with the formation of the Antarctic Ice Sheet about 30 Ma ago and partly by complex sedimentary processes. Regional correlation with geological ages using the reflectors show that the canyons cut through the Cretaceous and lower Tertiary sediments while the sedimentary infill of the canyon is predominantly Miocene and younger. Gravity-driven depositional processes, downward excavation by down slope sediment flows, mass wasting from the canyon walls and variation in terrigenous sediment supply have played significant roles in maintaining the canyons. These canyons were probably conduits for sediment transport to deep-waters in the Gulf of Guinea during their period of formation. 相似文献
8.
Hema Achyuthan Nagalakshmi Thirunavukarasu 《Journal of the Geological Society of India》2009,73(5):683-696
In this paper we present Quaternary stratigraphy of the area around Chennai based on archaeological findings on the ferricrete
surface, geomorphological observations supplemented by radiocarbon dating. The coastal landscape around Chennai, Tamil Nadu,
has preserved ferruginised boulder gravel deposits, ferricretes and fluvial deposits of varying thickness. The area studied
is approximately 150 km east to west and 180 km north to south with a broad continental shelf towards the seaward. Several
rivers enter the Bay of Bengal along its shores like the Koratallaiyar, Cooum and the Adyar. Precambrian charnockite and Upper
Gondwana sandstone and shale bedrock rim the shelf margin. For the most part, the Upper Pleistocene-Holocene fluvial sediments
overlie an erosion surface that has cut into older Pleistocene sediments and ferricrete surface. Incised valleys that cut
into this erosion surface are up to 5–6 km wide and have a relief of at least 30 m. The largest valley is that cut by the
Koratallaiyar River. Holocene sediments deposited in the incised valleys include fluvial gravels, early transgressive channel
sands and floodplain silts. Older Pleistocene sediments are deposited before and during the 120-ka high stand (Marine isotope
stage 5). They consist of ferricretes and ferricrete gravel formed in nearshore humid environments. Muddy and sandy clastic
sediments dated to the ca. 5 ka highstand suggest that the climate was semi arid at this time with less fluvial transport.
The coarsening up sequence indicates deposition by high intensity channel processes. Pedogenic mottled, clayey silt unit represents
an important tectonic event when the channel was temporarily drained and sediment were sub aerially exposed. Uplift of the
region has caused the local rivers to incise into the landscape, forming degradation terraces. 相似文献
9.
Pindos foreland basin in west Peloponnesus (Tritea, Hrisovitsi and Finikounda sub‐basins) during Late Eocene to Early Oligocene was an underfilled foreland basin. The basin's geometry was affected by the presence of internal thrusting and transfer faults, causing changes in depth and width. Due to internal thrusting, the foreland basin changed through time from a uniform to non‐uniform configuration, whereas transfer faults have an intensive impact on depositional environments within the basin. Internal thrusting (Gavrovo, internal and middle Ionian thrusts) activated synchronously with the major Pindos Thrust, creating intrabasinal highs that influenced palaeocurrent directions. The transfer faults cross‐cut the intrabasinal highs and produced low relief areas that act as pathways for sediment distribution. The sediments are thicker and sandstone‐rich on the downthrown sides of the transfer faults. In these areas, sandstone reservoirs could be produced. Such tectonically active areas constitute promise for oil and gas reservoirs and traps. 相似文献
10.
David S. Brew Graham Evans 《Proceedings of the Geologists' Association. Geologists' Association》2018,129(2):135-143
The Tofts located in north-western Fenland is a low ridge composed of sandy silt, elevated several metres above the surrounding land. Stratigraphically, the feature is the landward edge of an intertidal-subtidal sand body that stretches east into The Wash. It was the location of a Medieval salt-making industry. The ridge seems to have been initiated after 2100?cal?years BP by storm waves and/or wind transporting sediment landward from adjacent intertidal flats. Differential consolidation of peat on its landward side and dumping of sediment onto the surface during salt-making enhanced its morphological expression. 相似文献
11.
本文主要介绍了前陆盆地层序地层学的研究现状及急待解决的问题。前陆盆地层序地层学是将层序地层学的理论应用于构造活动区盆地分析的一个特例;前陆盆地二级构造层序代表了盆地不同成盆期的产物;前陆盆地的三级构造层序的成因并非受全球统一海平面变化控制,而与盆缘造山带的区域构造活动、盆内沉积作用和相对海平面变化的联合作用有关,是一个成盆期不同发育阶段的产物;前陆盆地地层的层序反映了前陆盆地构造演化史为一个多旋回的沉积-构造演化史。 相似文献
12.
Nicholas Eyles Joseph I. Boyce John D. Halfman Berkant Koseoglu 《Sedimentary Geology》2000,130(3-4):283-311
Upper and Middle Waterton lakes fill a glacially scoured bedrock basin in a large (614 km2) watershed in the eastern Front Ranges of the Rocky Mountains of southern Alberta, Canada and northern Montana, U.S.A. The stratigraphic infill of the lake has been imaged with 123 km of single-channel FM sonar (‘chirp') reflection profiles. Offshore sonar data are combined with more than 2.5 km of multi-channel, land-based seismic reflection profiles collected from a large fan-delta. Three seismic stratigraphic successions (SSS I to III) are identified in Waterton Lake resting on a prominent basal reflector (bedrock) that reaches a maximum depth of about 250 m below lake level. High-standing rock steps (reigels) divide the lake into sub-basins that can be mapped using lake floor reflection coefficients. A lowermost transparent to poorly stratified seismic succession (SSS I, up to 30 m thick) is present locally between bedrock highs and has high seismic velocities (1750–2100 m/s) typical of compact till or outwash. A second stratigraphic succession (SSS II, up to 50 m thick), occurs throughout the lake basin and is characterised by continuous, closely spaced reflectors typical of repetitively bedded and rhythmically laminated silts and clays most likely deposited by underflows from fan-deltas; paleo-depositional surfaces identify likely source areas during deglaciation. Intervals of acoustically transparent seismic facies, up to 5 m thick, are present within SSS II. At the northern end of Upper Waterton Lake, SSS II has a hummocky surface underlain by collapse structures and chaotic facies recording the melt of buried ice. Sediment collapse may have triggered downslope mass flows and may account for massive facies in SSS II. A thin Holocene succession (SSS III, <5 m) shows very closely spaced reflectors identified as rhythmically laminated fine pelagic sediment deposited from interflows and overflows. SSS III contains Mt. Mazama tephra dated at 6850 yr BP. 相似文献
13.
云南楚雄盆地位于扬子陆块的西南边缘,为一典型的中生代周缘前陆盆地。盆地演化阶段明显,晚三叠世为前陆早期复理石沉积,侏罗纪则为前陆晚期磨拉石沉积。对盆地构造沉降史研究后笔者认为:①晚三叠世复理石沉积盆地构造沉降幅度巨大,沉降与沉积中心位于盆地最西部,紧邻古哀牢山造山带,沉积体呈楔形展布;②侏罗纪磨拉石沉积盆地构造沉降和沉积中心以及前缘隆起向内陆方向迁移明显;③中生代构造快速沉降的沉积体的楔形展布表明盆地具有前陆岩石圈挠曲成因特征;④盆地的高沉积速率受构造和超补偿沉积作用的共同控制。 相似文献
14.
Along the Caledonian front in central Scandinavia, the expected peripheral or pro-foreland basin is neither physically present nor are there any significant traces in the sedimentary record. In order to explain and quantify this situation, the authors assess the major geometric and mechanical constraints on the Caledonian orogenic wedge and model the orogenic load and its influence on the foreland lithosphere of Baltica. Geologic and geophysical data show a strong foreland lithosphere with a flexural parameter (α) of approximately 100 km. The shape of the orogenic wedge and its critical taper angle are dependent mainly on basal friction and wedge strength. In the external part organic-rich black shales provide a low-friction horizon both at the basal detachment surface and within the wedge itself. The more internal part of the wedge is composed of metamorphic and crystalline rocks, which cooled and strengthened prior to thrusting. As a result, the external part of the wedge had a lower strength and a smaller critical taper angle than its internal part, so the orogenic load is upward concave. Modelling of the effect of such a load on the Baltica lithosphere shows a very small depression in front of the load (2 km). The flexural depression produced by the main part of the orogenic load is filled up by the thickening thrust-and-fold belt, so that there is little space left for a foreland basin. These results imply that the missing foreland basin in front of the central Scandinavian Caledonides is not due to subsequent erosion, but is a primary feature. 相似文献
15.
David Uliný 《Sedimentology》1999,46(5):807-836
The Dakota Formation in southern Utah (Kaiparowits Plateau region) is a succession of fluvial through shallow-marine facies formed during the initial phase of filling of the Cretaceous foreland basin of the Sevier orogen. It records a number of relative sea-level fluctuations of different frequency and magnitude, controlled by both tectonic and eustatic processes during the Early to Late Cenomanian. The Dakota Formation is divided into eight units separated by regionally correlatable surfaces that formed in response to relative sea-level fluctuations. Units 1–6B represent, from bottom to top, valley-filling deposits of braided streams (unit 1), alluvial plain with anastomosed to meandering streams (2), tide-influenced fluvial and tide-dominated estuarine systems (3A and 3B), offshore to wave-dominated shoreface (4, 5 and 6A) and an estuarine incised valley fill (6A and 6B). The onset of flexural subsidence and deposition in the foredeep was preceded by eastward tilting of the basement strata, probably caused by forebulge migration during the Early Cretaceous, which resulted in the incision of a westward-deepening predepositional relief. The basal fluvial deposits of the Dakota Formation, filling the relief, reflect the onset of flexural subsidence and, possibly, a eustatic sea-level rise. Throughout the deposition of the Dakota Formation, flexure controlled the long-term, regional subsidence rate. Locally, reactivation of basement faults caused additional subsidence or minor uplift. Owing to a generally low subsidence rate, differential compaction locally influenced the degree of preservation of the Dakota units. Eustasy is believed to have been the main control on the high-frequency relative sea-level changes recorded in the Dakota. All surfaces that separate individual Dakota units are flooding surfaces, most of which are superimposed on sequence boundaries. Therefore, with the exception of unit 6B and, possibly, 3B, most of the Dakota units are interpreted as depositional sequences. Fluvial strata of units 1 and 2 are interpreted as low-frequency sequences; the coal zones at the base and within unit 2 may represent a response to higher frequency flooding events. Units 3A to 6B are interpreted as having formed in response to high-frequency relative sea-level fluctuations. Shallow-marine units 4, 5 and 6A, interpreted as parasequences by earlier authors, can be divided into facies-based systems tracts and show signs of subaerial exposure at their boundaries, which allows interpretation as high-frequency sequences. In general, the Dakota units are good examples of high-frequency sequences that can be misinterpreted as parasequences, especially in distal facies or in places where signs of subaerial erosion are missing or have been removed by subsequent transgressive erosion. Both low- and high-frequency sequences represented by the Dakota units are stacked in an overall retrogradational pattern, which reflects a long-term relative sea-level rise, punctuated by brief periods of relative sea-level fall. There is a relatively major fall near the end of the M. mosbyense Zone, whereas the base of the Tropic shale is characterized by a major flooding event at the base of the S. gracile Zone. A similar record of Cenomanian relative sea-level change in other regions, e.g. Europe or northern Africa, suggests that both high- and low-frequency relative sea-level changes were governed by eustasy. The high-frequency relative sea-level fluctuations of ≈100 kyr periodicity and ≈10–20 m magnitude, similar to those recorded in other Cenomanian successions in North America and Central Europe, were probably related to Milankovitch-band, climate-driven eustasy. Either minor glacioeustatic fluctuations, superimposed on the overall greenhouse climate of the mid-Cretaceous, or mechanisms, such as the fluctuations in groundwater volume on continents or thermal expansion and contraction of sea water, could have controlled the high-frequency eustatic fluctuations. 相似文献
16.
Ehtisham Abdul Rehman 《Arabian Journal of Geosciences》2017,10(4):88
Reduced amplitude and distorted dispersion of seismic waves caused by attenuation, especially strong attenuation, always degrade the resolution of migrated images. To improve seismic imaging, attenuation must be compensated. This study addresses the factors causing seismic attenuation in Jati Block. Jati Block lies in Lower Indus Basin, Pakistan, approximately 25 mi north of the offshore Indus. Method used for Q factor is empirical equation method. Q factor correlation indicates that there are three major zones of attenuation in Jati block, i.e., zone I (surface to top Khadro), zone II (Upper Goru Formation), and zone III (Lower Goru Formation). Lowest Q value is in zone I, followed by zone II and zone III, respectively. Commonly, Khadro Formation (Basalt) of Paleocene and saucer-shaped igneous intrusion is considered as sources of attenuation. However, surprisingly, Khadro Formation of Paleocene and saucer-shaped igneous intrusion is zone of minimum attenuation and causes minimal transmission loss. Anisotropy analysis is performed to determine cause of attenuation within these zones. Thomson anisotropic parameters are computed for vertical wells using Backus averaging algorithm. These parameters are calibrated using sonic scanner data available for one well. Correlation of Q factor curve with mud log suggests that loose, unconsolidated sands and sand-shale layering are sources of attenuation within zone I. Attenuation in this zone is mostly due to fluid motion relative to the framework of loosely packed grains. Major lithology of Upper Goru Formation is marl. It is a slow formation, and in this formation, P wave loses energy to the formation in what is known as leaky P mode (sonic logging) and is dispersive (seismic). Epsilon (?) value is greater than almost 0.02 throughout Lower Goru Formations, indicating that this formation is strongly anisotropic. Fluctuation of epsilon (?) in Lower Goru Formation also suggests that this formation is causing layer-induced anisotropy. This layer-induced anisotropy in Lower Goru Formation added by dispersive and slow nature of Upper Goru Formation causes rapid attenuation. 相似文献
17.
龙门山前陆盆地底部不整合面: 被动大陆边缘到前陆盆地的转换 总被引:1,自引:3,他引:1
晚三叠世龙门山前陆盆地是在扬子板块西缘被动大陆边缘的基础上由印支造山运动而形成的,盆地中地层充填厚度巨大,包括晚三叠世卡尼期至瑞提期的马鞍塘组、小塘子组和须家河组,持续时间达20Myr,显示为1个以不整合面为界的构造层序。位于晚三叠世龙门山前陆盆地构造层序与下伏古生代-中三叠世被动大陆边缘构造层序之间的不整合面属于龙门山前陆盆地的底部不整合面,标志了扬子板块西缘从被动大陆边缘盆地到前陆盆地的转换。该底部不整合面位于晚三叠世马鞍塘组与中三叠世雷口坡组之间,显示为平行不整合面或角度不整合面,在接触面上发育冲蚀坑、古喀斯特溶沟、溶洞、溶岩角砾、古风化壳的褐铁矿、黏土层及石英、燧石细砾岩等底砾岩。该不整合面向南东方向不断地切削下伏地层,且均发育岩溶风化面,上覆的晚三叠世地层沿不整合面向南东超覆,显示了从整合面到不整合面的变化过程,并随着逆冲楔的推进向南东方向迁移,其超覆线、侵蚀带和相带的走向线与龙门山冲断带的走向大致平行。底部不整合面显示为典型的前陆挠曲不整合面,标志着龙门山前陆盆地的形成和扬子板块西缘挠曲下降和淹没过程,底部为古喀斯特作用面,下部为碳酸盐缓坡和海绵礁建造,上部为进积过程中形成的三角洲沉积物,具有向上变粗的垂向结构,表明底部不整合面和前缘隆起的抬升是扬子板块西缘构造负载的挠曲变形的产物,显示了在卡尼期松潘-甘孜残留洋盆的迅速闭合和逆冲构造负载向扬子板块的推进过程。本次在对晚三叠世龙门山前陆盆地底部不整合面的风化壳、残留厚度、地层缺失、剥蚀厚度、地层超覆等研究的基础上,计算了底部不整合面迁移速率、前缘隆起迁移速率、地层上超速率和前缘隆起的剥蚀速率,并与逆冲楔推进速率进行了对比,结果表明,底部不整合面迁移速率、前缘隆起的迁移速率、地层上超速率均介于3~18mm·a-1之间,其与逆冲楔推进速率(5~15mm·a-1)相似,因此,可用底部不整合面迁移速率、前缘隆起的迁移速率和地层上超速率代表逆冲楔推进速率。但是前缘隆起的剥蚀速率很小,介于0.02~0.08mm·a-1之间,仅为逆冲楔推进速率的1/100。 相似文献
18.
19.
《地学前缘》2017,(3):127-136
前陆盆地油气资源丰富但构造变形十分复杂,使得前陆盆地构造-热演化模拟面临挑战。前陆盆地演化过程中构造与热的耦合体现在多个层面:岩石圈热演化对岩石圈强度时空分布及其挠曲的影响;逆冲推覆作用的浅部温度效应;快速沉积作用对盆地温度场的影响等。首先,前陆盆地形成时的岩石圈热背景及其造成的岩石圈强度空间变化对盆地后期的演化具有重要影响。同时早期热事件的热扰动也会叠加在前陆盆地的构造-热演化过程中,并不断衰减,影响岩石圈的流变结构,从而带来一系列的影响。热与构造演化相耦合在前陆盆地定量模拟中非常重要。其次,还需特别关注岩石圈深部过程与近地表构造过程的耦合。造山带逆冲推覆、抬升和剥蚀是与前陆盆地形成相关的重要构造活动,这种运动引起的热对流对造山带的热结构、前陆逆冲带以及前渊地区的温度场的分布有着重要影响。最后,前陆盆地形成演化过程中的快速沉积作用对盆地温度场和地表热流产生强烈的压制作用,对前陆盆地浅部热演化的影响不容忽视。因此,在浅部热演化(包括造山带逆冲推覆、快速沉积压实等)与盆地下伏岩石圈挠曲、深部热演化的联合作用下,使得前陆盆地构造-热演化颇为复杂,二者的耦合使得前陆盆地构造-热演化模拟颇具挑战。 相似文献
20.
A loess section near Lanzhou, China, has been investigated using the seismic refraction technique. The results show that the method is able to discriminate four distinct seismic boundaries within the section as well as indicating that the loess-bedrock contact occurs at a depth of more than 200 m. A 30 m deep pit was subsequently dug and revealed that the first two seismic boundaries correspond to soil units Sa (an intermediate soil within loess unit L1) and S1 (the last interglacial soil at the base of L1). These results, though preliminary, indicate the potential of the technique not only for mapping loess-bedrock contacts but also for determining the finer subsurface detail of the loess-palaeosol stratigraphy. 相似文献