首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 715 毫秒
1.
This paper presents a review of recent available data on the first solid condensates of the Solar System, which include refractory CAIs (Ca–Al-rich Inclusions) mostly composed of Ca, Al, Mg, and Ti minerals. A theoretical condensation sequence calculated from thermodynamic data confirmed that CAIs formed as fine-grained aggregates in the protoplanetary disk from an 16О-rich gas of solar composition at temperatures >1300° K and pressures <10–4 bar. Based on the diversity of CAI types, their mineralogical, bulk chemical, and isotopic compositions, it can be concluded that CAIs experienced melting and evaporation, possibly by shock waves, which may have occurred in the protoplanetary disk within a brief time interval. Some CAIs may have experienced multiple events such as melting, evaporation, and recycling back to the disk by means of a bipolar outflow. The CAIs having an absolute age of 4567.30 ± 0.16 Myr are the oldest objects in the Solar System. The study of CAIs revealed two distinct oxygen isotope reservoirs (16О-rich and 16О-poor) and established a chronology of the sequence of processes forming individual CAI components using Mg–Al, Cr–Mn and Pb–Pb isotopic systematics.  相似文献   

2.
We report on the mineralogy, petrography, and in situ oxygen isotopic composition of twenty-five ultrarefractory calcium-aluminum-rich inclusions (UR CAIs) in CM2, CR2, CH3.0, CV3.1–3.6, CO3.0–3.6, MAC 88107 (CO3.1-like), and Acfer 094 (C3.0 ungrouped) carbonaceous chondrites. The UR CAIs studied are typically small, < 100 μm in size, and contain, sometimes dominated by, Zr-, Sc-, and Y-rich minerals, including allendeite (Sc4Zr3O12), and an unnamed ((Ti,Mg,Sc,Al)3O5) mineral, davisite (CaScAlSiO6), eringaite (Ca3(Sc,Y,Ti)2Si3O12), kangite ((Sc,Ti,Al,Zr,Mg,Ca,□)2O3), lakargiite (CaZrO3), warkite (Ca2Sc6Al6O20), panguite ((Ti,Al,Sc,Mg,Zr,Ca)1.8O3), Y-rich perovskite ((Ca,Y)TiO3), tazheranite ((Zr,Ti,Ca)O2−x), thortveitite (Sc2Si2O7), zirconolite (orthorhombic CaZrTi2O7), and zirkelite (cubic CaZrTi2O7). These minerals are often associated with 50–200 nm-sized nuggets of platinum group elements. The UR CAIs occur as: (i) individual irregularly-shaped, nodular-like inclusions; (ii) constituents of unmelted refractory inclusions – amoeboid olivine aggregates (AOAs) and Fluffy Type A CAIs; (iii) relict inclusions in coarse-grained igneous CAIs (forsterite-bearing Type Bs and compact Type As); and (iv) relict inclusions in chondrules. Most UR CAIs, except for relict inclusions, are surrounded by single or multilayered Wark-Lovering rims composed of Sc-rich clinopyroxene, ±eringaite, Al-diopside, and ±forsterite. Most of UR CAIs in carbonaceous chondrites of petrologic types 2–3.0 are uniformly 16O-rich (Δ17O ∼ −23‰), except for one CH UR CAI, which is uniformly 16O-depleted (Δ 17O ∼ −5‰). Two UR CAIs in Murchison have heterogeneous Δ17O. These include: an intergrowth of corundum (∼ ‒24‰) and (Ti,Mg,Sc,Al)3O5 (∼ 0‰), and a thortveitite-bearing CAI (∼ −20 to ∼ ‒5‰); the latter apparently experienced incomplete melting during chondrule formation. In contrast, most UR CAIs in metamorphosed chondrites are isotopically heterogeneous (Δ17O ranges from ∼ −23‰ to ∼ −2‰), with Zr- and Sc-rich oxides and silicates, melilite and perovskite being 16O-depleted to various degrees relative to uniformly 16O-rich (Δ17O ∼ −23‰) hibonite, spinel, Al-diopside, and forsterite. We conclude that UR CAIs formed by evaporation/condensation, aggregation and, in some cases, melting processes in a 16O-rich gas of approximately solar composition in the CAI-forming region(s), most likely near the protoSun, and were subsequently dispersed throughout the protoplanetary disk. One of the CH UR CAIs formed in an 16O-depleted gaseous reservoir providing an evidence for large variations in Δ17O of the nebular gas in the CH CAIs-forming region. Subsequently some UR CAIs experienced oxygen isotopic exchange during melting in 16O-depleted regions of the disk, most likely during the epoch of chondrule formation. In addition, UR CAIs in metamorphosed CO and CV chondrites, and, possibly, the corundum-(Ti,Mg,Sc,Al)3O5 intergrowth in Murchison experienced O-isotope exchange with aqueous fluids on the CO, CV, and CM chondrite parent asteroids. Thus, both nebular and planetary exchange with 16O-depleted reservoirs occurred.  相似文献   

3.
富钙长石-橄榄石包体与其他部分典型包体W-L边的成因   总被引:1,自引:1,他引:0  
球粒陨石中的富Ca、Al包体(简称CAI)形成于星云演化的最初始阶段,保存了大量星云形成和演化的各种信息。研究认为,包体的成因主要包括星云直接凝聚和熔融结晶,少部分甚至经历过高温蒸发过程。部分CAI最外层具有由一种或几种矿物组成的Warking-Lovering边(简称为W-L边),CAI和其W-L边对于认识早期星云环境和界定CAI的形成时间等均具有重要意义。目前,对于W-L边的形成过程研究并不深入,且一直存在争议。本文主要介绍了三个典型包体:C#1(富钙长石-橄榄石包体)、GRV 022459-2RI5(A型包体)和GRV 021579-3RI5(富尖晶石球粒状包体)及其W-L边的矿物岩石学和氧同位素组成特征。C#1包体明显经历过熔融结晶过程,W-L边氧同位素组成具有与包体内部矿物相似的富~(16)O同位素特征,表明W-L边的成因与包体的形成过程密切相关,形成于同一富~(16)O同位素组成区域,且W-L边属于包体熔融结晶过程后期的产物。矿物岩石学特征表明,GRV 022459-2RI5属于星云直接凝聚形成,其W-L边为包体形成过程最晚期星云凝聚产物。GRV021579-3RI5经历过熔融结晶过程,其W-L边为包体结晶最后阶段的产物。  相似文献   

4.
Grossite (CaAl4O7) is one of the one of the first minerals predicted to condense from a gas of solar composition, and therefore could have recorded isotopic compositions of reservoirs during the earliest stages of the Solar System evolution. Grossite-bearing Ca,Al-rich inclusions (CAIs) are a relatively rare type of refractory inclusions in most carbonaceous chondrite groups, except CHs, where they are dominant. We report new and summarize the existing data on the mineralogy, petrography, oxygen and aluminum-magnesium isotope systematics of grossite-bearing CAIs from the CR, CH, CB, CM, CO, and CV carbonaceous chondrites. Grossite-bearing CAIs from unmetamorphosed (petrologic type 2―3.0) carbonaceous chondrites preserved evidence for heterogeneous distribution of 26Al in the protoplanetary disk. The inferred initial 26Al/27Al ratio [(26Al/27Al)0] in grossite-bearing CAIs is generally bimodal, ˜0 and ˜5×10−5; the intermediate values are rare. CH and CB chondrites are the only groups where vast majority of grossite-bearing CAIs lacks resolvable excess of radiogenic 26Mg. Grossite-bearing CAIs with approximately the canonical (26Al/27Al)0 of ˜5×10−5 are dominant in other chondrite groups. Most grossite-bearing CAIs in type 2–3.0 carbonaceous chondrites have uniform solar-like O-isotope compositions (Δ17O ˜ ‒24±2‰). Grossite-bearing CAIs surrounded by Wark-Lovering rims in CH chondrites are also isotopically uniform, but show a large range of Δ17O, from ˜ ‒40‰ to ˜ ‒5‰, suggesting an early generation of gaseous reservoirs with different oxygen-isotope compositions in the protoplanetary disk. Igneous grossite-bearing CAIs surrounded by igneous rims of ±melilite, Al-diopside, and Ca-rich forsterite, found only in CB and CH chondrites, have uniform 16O-depleted compositions (Δ17O ˜ ‒14‰ to ‒5‰). These CAIs appear to have experienced complete melting and incomplete O-isotope exchange with a 16O-poor (Δ17O ˜ ‒2‰) gas in the CB impact plume generated about 5 Ma after CV CAIs. Grossite-bearing CAIs in metamorphosed (petrologic type >3.0) CO and CV chondrites have heterogeneous Δ17O resulted from mineralogically-controlled isotope exchange with a 16O-poor (Δ17O ˜ ‒2 to 0‰) aqueous fluid on the CO and CV parent asteroids 3–5 Ma after CV CAIs. This exchange affected grossite, krotite, melilite, and perovskite; corundum, hibonite, spinel, diopside, forsterite, and enstatite preserved their initial O-isotope compositions. The internal 26Al-26Mg isochrons in grossite-bearing CAIs from weakly-metamorphosed CO and CV chondrites were not disturbed during this oxygen-isotope exchange.HCCJr is grateful to Klaus Keil for all his sound profession counsel and collegial friendship over the years. He has always been willing to talk and has the generous nature of listening and sharing his thoughts freely and constructively. Professor Klaus Keil has been a mentor to and played a key role in the careers of three of the authors of this paper (ANK, KN, and GRH). He has also influenced the careers of the other authors and most of the people who have worked on meteorites over the past 50+ years. We therefore dedicate this paper to Professor Keil and present it in this Special Issue of Geochemistry.  相似文献   

5.
《Gondwana Research》2000,3(1):105-117
Metapelitic migmatites in the Pangidi Granulite Complex, Eastern Ghats belt preserve a range of high-grade mineral assemblages that vary with bulk composition. Reaction textures preserved in the migmatites indicate that the crystallized granitic melt was formed in situ by biotite dehydration-melting reactions. Decompression occurred during an episode of partial melting and melt crystallization, and was synchronous with exhumation of migmatites along shear zones. Retrograde reaction textures and the calculated positions of the mineral reactions and discrete P-T points obtained by thermobarometry reflect ∼3 kbar (11 km) of exhumation from near peak P-T conditions of ∼9 kbar and 950°C.Decompression has been traditionally ascribed to be the cause of dehydration melting in many orogens, but the bulk of melting reactions in Pangidi were ultimately driven by elevated temperatures. Simple pressure release during exhumation did not force melting reactions, instead as the present study reveals, it is more likely that the presence of melt triggered deformation in the migmatites and facilitated exhumation.  相似文献   

6.
This paper shows that ferrous silicate meteorites (chondrites), which are conventionally regarded as direct condensates of the primordial solar nebula, are actually igneous and evolved in two stages that were contrasting in their physical and chemical parameters. The origin and early evolution of chondrites went on under enormous fluid pressure, which produced diamond embryos oversaturated with fluid inclusions, and gave rise to isotope abnormality and chondrite structure due to tear-shaped segregation of silicate melt in a Fe-rich diamond-bearing matrix melt. Chondrite crystallization mostly occurred during the second stage, which occurred under low pressure and was characterized by normal fractionation of isotopes and formation of structure opposite to chondrite (containing metal droplets in a silicate matrix), and which involved the formation of volcanic glass.  相似文献   

7.
Based on their mineralogy and petrography, ∼200 refractory inclusions studied in the unique carbonaceous chondrite, Acfer 094, can be divided into corundum-rich (0.5%), hibonite-rich (1.1%), grossite-rich (8.5%), compact and fluffy Type A (spinel-melilite-rich, 50.3%), pyroxene-anorthite-rich (7.4%), and Type C (pyroxene-anorthite-rich with igneous textures, 1.6%) Ca,Al-rich inclusions (CAIs), pyroxene-hibonite spherules (0.5%), and amoeboid olivine aggregates (AOAs, 30.2%). Melilite in some CAIs is replaced by spinel and Al-diopside and/or by anorthite, whereas spinel-pyroxene assemblages in CAIs and AOAs appear to be replaced by anorthite. Forsterite grains in several AOAs are replaced by low-Ca pyroxene. None of the CAIs or AOAs show evidence for Fe-alkali metasomatic or aqueous alteration. The mineralogy, textures, and bulk chemistry of most Acfer 094 refractory inclusions are consistent with their origin by gas-solid condensation and may reflect continuous interaction with SiO and Mg of the cooling nebula gas. It appears that only a few CAIs experienced subsequent melting. The Al-rich chondrules (ARCs; >10 wt% bulk Al2O3) consist of forsteritic olivine and low-Ca pyroxene phenocrysts, pigeonite, augite, anorthitic plagioclase, ± spinel, FeNi-metal, and crystalline mesostasis composed of plagioclase, augite and a silica phase. Most ARCs are spherical and mineralogically uniform, but some are irregular in shape and heterogeneous in mineralogy, with distinct ferromagnesian and aluminous domains. The ferromagnesian domains tend to form chondrule mantles, and are dominated by low-Ca pyroxene and forsteritic olivine, anorthitic mesostasis, and Fe,Ni-metal nodules. The aluminous domains are dominated by anorthite, high-Ca pyroxene and spinel, occasionally with inclusions of perovskite; have no or little FeNi-metal; and tend to form cores of the heterogeneous chondrules. The cores are enriched in bulk Ca and Al, and apparently formed from melting of CAI-like precursor material that did not mix completely with adjacent ferromagnesian melt. The inferred presence of CAI-like material among precursors for Al-rich chondrules is in apparent conflict with lack of evidence for melting of CAIs that occur outside chondrules, suggesting that these CAIs were largely absent from chondrule-forming region(s) at the time of chondrule formation. This may imply that there are several populations of CAIs in Acfer 094 and that mixing of “normal” CAIs that occur outside chondrules and chondrules that accreted into the Acfer 094 parent asteroid took place after chondrule formation. Alternatively, there may have been an overlap in the CAI- and chondrule-forming regions, where the least refractory CAIs were mixed with Fe-Mg chondrule precursors. This hypothesis is difficult to reconcile with the lack of evidence of melting of AOAs which represent aggregates of the least refractory CAIs and forsterite grains.  相似文献   

8.
Origin and chronology of chondritic components: A review   总被引:1,自引:0,他引:1  
Mineralogical observations, chemical and oxygen-isotope compositions, absolute 207Pb-206Pb ages and short-lived isotope systematics (7Be-7Li, 10Be-10B, 26Al-26Mg, 36Cl-36S, 41Ca-41K, 53Mn-53Cr, 60Fe-60Ni, 182Hf-182W) of refractory inclusions [Ca,Al-rich inclusions (CAIs) and amoeboid olivine aggregates (AOAs)], chondrules and matrices from primitive (unmetamorphosed) chondrites are reviewed in an attempt to test (i) the x-wind model vs. the shock-wave model of the origin of chondritic components and (ii) irradiation vs. stellar origin of short-lived radionuclides. The data reviewed are consistent with an external, stellar origin for most short-lived radionuclides (7Be, 10Be, and 36Cl are important exceptions) and a shock-wave model for chondrule formation, and provide a sound basis for early Solar System chronology. They are inconsistent with the x-wind model for the origin of chondritic components and a local, irradiation origin of 26Al, 41Ca, and 53Mn. 10Be is heterogeneously distributed among CAIs, indicating its formation by local irradiation and precluding its use for the early solar system chronology. 41Ca-41K, and 60Fe-60Ni systematics are important for understanding the astrophysical setting of Solar System formation and origin of short-lived radionuclides, but so far have limited implications for the chronology of chondritic components. The chronological significance of oxygen-isotope compositions of chondritic components is limited. The following general picture of formation of chondritic components is inferred. CAIs and AOAs were the first solids formed in the solar nebula ∼4567-4568 Myr ago, possibly within a period of <0.1 Myr, when the Sun was an infalling (class 0) and evolved (class I) protostar. They formed during multiple transient heating events in nebular region(s) with high ambient temperature (at or above condensation temperature of forsterite), either throughout the inner protoplanetary disk (1-4 AU) or in a localized region near the proto-Sun (<0.1 AU), and were subsequently dispersed throughout the disk. Most CAIs and AOAs formed in the presence of an 16O-rich (Δ17O ∼ −24 ± 2‰) nebular gas. The 26Al-poor [(26Al/27Al)0 < 1 × 10−5], 16O-rich (Δ17O ∼ −24 ± 2‰) CAIs - FUN (fractionation and unidentified nuclear effects) CAIs in CV chondrites, platy hibonite crystals (PLACs) in CM chondrites, pyroxene-hibonite spherules in CM and CO chondrites, and the majority of grossite- and hibonite-rich CAIs in CH chondrites—may have formed prior to injection and/or homogenization of 26Al in the early Solar System. A small number of igneous CAIs in ordinary, enstatite and carbonaceous chondrites, and virtually all CAIs in CB chondrites are 16O-depleted (Δ17O > −10‰) and have (26Al/27Al)0 similar to those in chondrules (<1 × 10−5). These CAIs probably experienced melting during chondrule formation. Chondrules and most of the fine-grained matrix materials in primitive chondrites formed 1-4 Myr after CAIs, when the Sun was a classical (class II) and weak-lined T Tauri star (class III). These chondritic components formed during multiple transient heating events in regions with low ambient temperature (<1000 K) throughout the inner protoplanetary disk in the presence of 16O-poor (Δ17O > −5‰) nebular gas. The majority of chondrules within a chondrite group may have formed over a much shorter period of time (<0.5-1 Myr). Mineralogical and isotopic observations indicate that CAIs were present in the regions where chondrules formed and accreted (1-4 AU), indicating that CAIs were present in the disk as free-floating objects for at least 4 Myr. Many CAIs, however, were largely unaffected by chondrule melting, suggesting that chondrule-forming events experienced by a nebular region could have been small in scale and limited in number. Chondrules and metal grains in CB chondrites formed during a single-stage, highly-energetic event ∼4563 Myr ago, possibly from a gas-melt plume produced by collision between planetary embryos.  相似文献   

9.
Models for thermodynamic behavior of FeO-bearing liquids are required for understanding the separate roles of evaporation, condensation and crystallization in the formation of free-floating silicate liquid droplets in the early solar nebula. These droplets, frozen as chondrules, are common in chondritic meteorites. Evaporation coefficients for Fe and FeO of ∼0.2 are calculated here from existing data using silicate liquid activity models. These models, used to describe gas-liquid-solid equilibria and to constrain kinetic processes, are compared and found similar, and the effects of liquid non-ideality are assessed. A general approach is presented for predicting the evaporation behavior of FeO-bearing Al2O3-CaO-SiO2-MgO liquids in H2-rich gas above 1400 K at low total pressure. Results are vapor pressure curves for Fe, FeO and other gas species above typical chondrule liquids, suitable for predicting compositional trajectories of residual liquids evaporating in a hydrogen-dominated vapor. These predictions are consistent with chondrule formation in the protoplanetary disk in heating events of short duration, such as those expected from shock wave or current sheet models.  相似文献   

10.
We have studied the crystallization sequences, mineral chemistries, and textures that develop when an average Type B Ca-Al-rich inclusion composition is cooled in air from 1275–1580° C to below 1000°C at rates between 0.5 and 1000°C/hr. Crystallization sequences, the textures of all the major phases, pyroxene chemistry, and melilite zoning patterns are functions of both the cooling rate and the temperature from which cooling begins. Determination of the order of pyroxene and plagioclase crystallization has been identified as an important goal for petrographic studies of CAIs because it can be used to set constraints on the cooling rate experienced by an individual inclusion. Overall textures plus melilite zoning patterns and pyroxene chemistry can give important clues as to whether pyroxene or plagioclase began to crystallize first. Melilite texture and chemistry appear to yield the most valuable information on the maximum temperature to which an inclusion was raised prior to cooling.Comparison of our experimental results with petrographic observations of Type B CAIs suggests that most inclusions were partially melted and then cooled at rates on the order of a few tenths to tens of degrees per hour. Maximum temperatures of about 1400°C appear most likely for intermediate Type B Allende inclusions. Our results do not support the suggestion that the textures observed in these inclusions formed by crystallization of supercooled, metastable melt droplets condensed from nebular gas. The slow cooling rates we infer for CAIs are difficult to reconcile with models for their origin that imply simple radiative cooling of individual molten or partially molten droplets in a cold, low density environment. On the other hand, cooling rates of the nebular cloud are believed to have been much slower than those we have inferred for Type B CAIs. Scenarios that could be reconciled with the thermal history that we have inferred include drag heating of particles falling through nebular gas, heating by intense radiation (e.g., via flares) from the early sun, heating in nebular shock fronts, or other thermal heterogeneities in the early nebula allowing time scales for cooling (and heating) of CAIs much shorter than those for the nebular cloud as a whole. Successful models for the origin of Type B CAIs must account for the fact that most Type B CAIs cooled relatively slowly from a partially molten state.  相似文献   

11.
Compared to felsic igneous rocks the genetic relationship between brittle and ductile fabric development and its influence on the geometry of deformed mafic melt sheets has received little attention in structural analyses. We explore these relationships using the Sudbury Igneous Complex (SIC) as an example. The SIC is the relic of a layered impact melt sheet that was transformed into a fold basin, the Sudbury Basin, during Paleoproterozoic deformation at the southern margin of the Archean Superior Province. We studied brittle and ductile strain fabrics on the outcrop and map scales in the southern Sudbury Basin, notably in the Norite and Quartz Gabbro layers of the SIC. Here, deformation is heterogeneous and occurred under variable rheological conditions, evident by the development of brittle shear fractures, brittle-ductile shear zones and pervasive ductile strain. The mineral fabrics formed under low- to middle greenschist-facies metamorphism, whereby brittle deformation caused hydrolytic weakening and ductile fabric development. Principal strain axes inferred from all structural elements are collinear and point to a single deformation regime that led to thinning of SIC layers during progressive deformation. Ductile fabric development profoundly influenced the orientation of SIC material planes, such as lithological contacts and magmatic mineral fabrics. More specifically, these planar structural elements are steep where the SIC underwent large magnitudes of thinning, i.e., in the south limb of the Sudbury Basin. Here, the actual tilt component of material planes is likely smaller than its maximum total rotation (60°) inferred from inclined igneous layering in the Norite. Our field-based study shows that ductile fabric development from brittle faults can have a profound influence on the rotational components of primary material planes in deformed igneous melt sheets.  相似文献   

12.
We review the oxygen isotopic compositions of minerals in chondrules and compound objects composed of a chondrule and a refractory inclusion, and bulk oxygen isotopic compositions of chondrules in unequilibrated ordinary, carbonaceous, enstatite, and Kakangari-like chondrites, focusing on data acquired using secondary ion mass-spectrometry and laser fluorination coupled with mass-spectrometry over the last decade. Most ferromagnesian chondrules from primitive (unmetamorphosed) chondrites are isotopically uniform (within 3–4‰ in Δ17O) and depleted in 16O (Δ17O>−7‰) relative to amoeboid olivine aggregates (AOAs) and most calcium–aluminum-rich inclusions (CAIs) (Δ17O<−20‰), suggesting that these classes of objects formed in isotopically distinct gaseous reservoirs, 16O-poor and 16O-rich, respectively. Chondrules uniformly enriched in 16O (Δ17O<−15‰) are exceptionally rare and have been reported only in CH chondrites. Oxygen isotopic heterogeneity in chondrules is mainly due to the presence of relict grains. These appear to consist of chondrules of earlier generations and rare refractory inclusions; with rare exceptions, the relict grains are 16O-enriched relative to chondrule phenocrysts and mesostasis. Within a chondrite group, the magnesium-rich (Type I) chondrules tend to be 16O-enriched relative to the ferrous (Type II) chondrules. Aluminum-rich chondrules in ordinary, enstatite, CR, and CV chondrites are generally 16O-enriched relative to ferromagnesian chondrules. No systematic differences in oxygen isotopic compositions have been found among these chondrule types in CB chondrites. Aluminum-rich chondrules in carbonaceous chondrites often contain relict refractory inclusions. Aluminum-rich chondrules with relict CAIs have heterogeneous oxygen isotopic compositions (Δ17O ranges from −20‰ to 0‰). Aluminum-rich chondrules without relict CAIs are isotopically uniform and have oxygen isotopic compositions similar to, or approaching, those of ferromagnesian chondrules. Phenocrysts and mesostases of the CAI-bearing chondrules show no clear evidence for 16O-enrichment compared to the CAI-free chondrules. Spinel, hibonite, and forsterite of the relict refractory inclusions largely retained their original oxygen isotopic compositions. In contrast, plagioclase and melilite of the relict CAIs experienced melting and 16O-depletion to various degrees, probably due to isotopic exchange with an 16O-poor nebular gas. Several igneous CAIs experienced isotopic exchange with an 16O-poor nebular gas during late-stage remelting in the chondrule-forming region. On a three-isotope diagram, bulk oxygen isotopic compositions of most chondrules in ordinary, enstatite, and carbonaceous chondrites plot above, along, and below the terrestrial fractionation line, respectively. Bulk oxygen isotopic compositions of chondrules in altered and/or metamorphosed chondrites show evidence for mass-dependent fractionation, reflecting either interaction with a gaseous/fluid reservoir on parent asteroids or open-system thermal metamorphism. Bulk oxygen isotopic compositions of chondrules and oxygen isotopic compositions of individual minerals in chondrules and refractory inclusions from primitive chondrites plot along a common line of slope of 1, suggesting that only two major reservoirs (gas and solids) are needed to explain the observed variations. However, there is no requirement that each had a permanently fixed isotopic composition. The absolute (207Pb–206Pb) and relative (27Al–26Mg) chronologies of CAIs and chondrules and the differences in oxygen isotopic compositions of most chondrules (16O-poor) and most refractory inclusions (16O-rich) can be interpreted in terms of isotopic self-shielding during UV photolysis of CO in the initially 16O-rich (Δ17O−25‰) parent molecular cloud or protoplanetary disk. According to these models, the UV photolysis preferentially dissociates C17O and C18O in the parent molecular cloud and in the peripheral zones of the protoplanetary disk. If this process occurs in the stability field of water ice, the released atomic 17O and 18O are incorporated into water ice, while the residual CO gas becomes enriched in 16O. During the earliest stages of evolution of the protoplanetary disk, the inner solar nebula had a solar H2O/CO ratio and was 16O-rich. During this time, AOAs and the 16O-rich CAIs and chondrules formed. Subsequently, the inner solar nebula became H2O- and 16O-depleted, because ice-rich dust particles, which were depleted in 16O, agglomerated outside the snowline (5 AU), drifted rapidly towards the Sun and evaporated. During this time, which may have lasted for 3 Myr, most chondrules and the 16O-depleted igneous CAIs formed. We infer that most chondrules formed from isotopically heterogeneous, but 16O-depleted precursors, and experienced isotopic exchange with an 16O-poor nebular gas during melting. Although the relative roles of the chondrule precursor materials and gas–melt isotopic exchange in establishing oxygen isotopic compositions of chondrules have not been quantified yet, mineralogical, chemical, and isotopic evidence indicate that Type I chondrules may have formed in chemical and isotopic equilibrium with nebular gas of variable isotopic composition. Whether these variations were spatial or temporal are not known yet.  相似文献   

13.
Type B CAIs are subdivided into B1s, with well-developed melilite mantles, and B2s, with randomly distributed melilite. Despite intensive study, the origin of the characteristic melilite mantle of the B1s remains unclear. Recently, we proposed that formation of the melilite mantle is caused by depletion of the droplet surface in volatile magnesium and silicon due to higher evaporation rates of volatile species compared to their slow diffusion rates in the melt, thus making possible crystallization of melilite at the edge of the CAI first, followed by its crystallization in the central parts at lower temperatures. Here, we present the results of an experimental study that aimed to reproduce the texture observed in natural Type B CAIs. First, we experimentally determined crystallization temperatures of melilite for three melt compositions, which, combined with literature data, allowed us to find a simple relationship between the melt composition, crystallization temperature, and composition of first crystallizing melilite. Second, we conducted a series of evaporation and cooling experiments exposing CAI-like melts to gas mixtures with different oxygen fugacities (fO2). Cooling of the molten droplets in gases with logfO2?IW-4 resulted in crystallization of randomly distributed melilite, while under more reducing conditions, melilite mantles have been formed. Chemical profiles through samples quenched right before melilite started to crystallize showed no chemical gradients in samples exposed to relatively oxidizing gases (logfO2?IW-4), while the near-surface parts of the samples exposed to very reducing gases (logfO2?IW-7) were depleted in volatile MgO and SiO2, and enriched in refractory Al2O3. Using these experimental results and the fact that the evaporation rate of magnesium and silicon from CAI-like melts is proportional to , we estimate that Type B1 CAIs could be formed by evaporation of a partially molten precursor in a gas of solar composition with . Type B2 CAIs could form by slower evaporation of the same precursors in the same gas with .  相似文献   

14.
The Saramta peridotite massif is located within the Sharyzhalgai complex, SW margin of the Siberian craton. The Saramta massif was formed in the Archean and then juxtaposed with granulites of crystalline basement of the Siberian craton. The Saramta harzburgites are highly refractory in terms of lack of residual clinopyroxene, olivine Mg-number (up to 0.937), and spinel Cr-number (∼0.5), suggesting high degree of partial melting. Detailed study of their microstructures shows that they have extensively reacted with a SiO2-rich melt, leading to the crystallization of orthopyroxene, clinopyroxene, amphibole and spinel at the expense of olivine. The major element compositions of the least reacted harzburgites are similar to the residues of refractory peridotites produced by the fractional melting (initial melting pressures >3 GPa and melt fractions ∼40%). Moreover, non-residual clinopyroxenes are highly depleted in Yb, Zr and Ti, but highly enriched in LREE. A two-stage history is proposed for the Saramta peridotite: (1) primitive mantle underwent depletion in the garnet stability field followed by melting in the spinel stability field; (2) refractory harzburgites underwent refertilization by SiO2-rich melt in supra-subduction zone. Rare Saramta lherzolites probably formed from more refractory harzburgites as a result of such a melt–rock reaction. The Saramta peridotites are similar to low-T coarse-grained peridotites of subcratonic mantle. Processes of their formation, as reflected by textures and composition of minerals of the Saramta peridotites, are characteristic of the early stages of subcratonic mantle formation.  相似文献   

15.
DaG 896 is an olivine-rich microporphyritic rock of komatiitic composition. Both the olivine composition (Fa17.5±2.1, [Mn/Mg] = 0.0061) and the bulk oxygen isotopic composition (δ17O = +2.55, δ18O = +3.50) indicate that DaG 896 is a sample of the H-chondrite parent body. The bulk chemistry shows an H-chondritic distribution of lithophile elements, whereas chalcophile and siderophile elements are strongly depleted, indicating formation through whole-rock melting (or nearly so) of H-chondrite material, nearly complete loss of the metal plus sulfide component, and crystallization without significant igneous fractionation. Superheated, severely shocked chondritic relics (∼10 vol%), typically in the form of corroded lithic fragments <100 μm in size intimately distributed within the igneous lithology, indicate that melting was triggered by a highly energetic impact, which possibly induced shock pressures of ∼80-100 GPa. The relatively young 3.704 ± 0.035 Ga 40Ar-39Ar crystallization age is consistent with the impact melting origin, as magmatism in the asteroid belt was active only in the first hundred million years of solar system history.Based on textural data and thermodynamic crystallization modelling, we infer that DaG 896 crystallized from a liquidus temperature of ∼1630°C under relatively slow cooling rates (∼10°C h−1) to ∼1300°C, before quenching. The two-stage cooling history indicates that a reasonable formation environment might be a dike intruding cooler basement below a crater floor. Metal-silicate fractionation may have been accomplished, at least at the centimeter-scale of the studied meteorite sample, through differential acceleration of immiscible liquids of different density during the intense flow regimes associated with the excavation and modification stages of the cratering mechanism. Alternatively, DaG 896 may represent a surface sample of a differentiated melt body at the floor of an impact crater, as gravitational settling appears to be an effective process at the surface of a chondritic parent asteroid: for metal particles 1 to 10 mm in size, typically observed in partially differentiated impact melt rocks, Stokes’ Law indicates a settling velocity >1 m h −1 during the first few hours of crystallization on asteroidal bodies of >25 km radius.The ∼3.7 Ga age of DaG 896 nearly overlaps with the slightly older resetting ages of H-chondrites (all impact melts) available from the literature, indicating that the H-chondrite parent asteroid underwent extensive impact melting at the enduring of the cataclysmic bombardment of the early solar system. Such an age overlap may also indicate early disruption of the initial H-chondrite parent asteroid.The close similarity between the bulk composition and degassing age of DaG 896 and silicate inclusions in IIE iron meteorites is further evidence in support of a common origin by impact melting and metal-silicate segregation on the H-chondrite parent asteroid. Our new high-precision oxygen isotopic measurements of H-chondrites (Δ17O = 0.77 ± 0.04) should be extended to IIEs to verify this possible petrogenetic link.  相似文献   

16.
In the North Cascade Mountains, Washington, rocks that underwent friction melting commonly contained sulfide minerals, mostly pyrrhotite and pyrite. During pseudotachylyte melt formation, sulfides melted to form immiscible sulfide droplets present in five distinct textural settings. The largest droplets formed through melting of lithic clasts, whereas micron-scale sulfide droplets are common in many of the pseudotachylytes veins.Microprobe analysis indicates that nearly all droplets are pyrrhotite. The disappearance of pyrite indicates that melt temperatures must have exceeded 750 °C, but other indications suggest that the melt temperature must have been much higher. The extremely common presence of pyrrhotite droplets suggests that pyrrhotite from the protolith melted, requiring a minimum melt temperature of 1200 °C. In some samples, evidence for fluid-rich bubbles, and possible silicate spherules indicates three coexisting immiscible phases within the silicate melt. The presence of sulfide droplets appears to be common, especially in relatively low oxygen-fugacity melts that formed at shallow crustal levels. This can provide a good textural marker of melting and therefore of pseudotachylyte formation, especially where other indications of melting (i.e., high temperature microlites, vesicles, etc.) are lacking, and illustrates the extreme temperatures possible along frictionally sliding surfaces during seismic events.  相似文献   

17.
In the Sandıklı (Afyon) region, western Taurides, the Late Proterozoic rocks of the Sandıklı basement complex are composed of low-grade meta-sedimentary rocks (Güvercinoluk Formation) intruded by felsic rocks (Kestel Cayı Porphyroid Suite, KCPS). The KCPS is a deformed and highly sheared, dome-shaped rhyolitic body with a granitic core. Quartz porphyry dikes intrude both the slightly metamorphic igneous and the sedimentary rocks of the basement complex. Both the quartz porphyries and rhyolites were converted into mylonites with relict igneous textures. Geochemical data show that these felsic igneous rocks are subalkaline and mainly granitic in composition with SiO2 >72 wt% and Al2O3 >11.5 wt%. The chondrite-normalized incompatible trace element patterns are characterized by distinct negative Rb, Nb, Sr, P, Ti, and Eu with enrichment in Th, U, La, Ce, Nd, Sm, and Zr. The REE patterns of the felsic rocks indicate a strong enrichment in LREE but display slightly flat HREE patterns. According to geochemical characteristics and petrogenetic modeling, extrusive and intrusive rocks of the KCPS were probably derived from an upper continental crustal source (partial melting of granites/felsic rocks) by 18–20% fractional melting plus 18–20% Rayleigh fractional crystallization, which seems to be the most effective igneous process during the crystallization of the KCPS. Single zircon age data from the granitoids and fossils from the disconformably overlying sedimentary successions indicate that the metamorphism and the igneous event in the Taurides are related to the Cadomian orogeny. Based on the geological, geochemical and petrogenetic correlation of the post-collisional granitoids it is further suggested that the Tauride belt in western central Turkey was in a similar tectonic setting to the Gondwanan terranes in North Africa (Younger Granitoids) and southern Europe (Spain, France, Bohemia, Brno Massifs) during the Late Cadomian period.  相似文献   

18.
This work presents new data on the conditions of formation of igneous rocks on the western slope of the Southern Urals and the adjacent part of the East European Platform. Based on the calculated P–T melting parameters of the mantle substrate, it is shown that plume magmatism leads to the formation of similar rocks (picrites and picrite-dolerites), while the genesis of them is quite different. The first type of rocks is a product of crystallization of the undifferentiated mantle-derived melt in the upper horizons of the crust; the rocks of the second type are formed as a result of magma differentiation in large intracrustal magma chambers.  相似文献   

19.
Creation of pathways for melt to migrate from its source is the necessary first step for transport of magma to the upper crust. To test the role of different dehydration‐melting reactions in the development of permeability during partial melting and deformation in the crust, we experimentally deformed two common crustal rock types. A muscovite‐biotite metapelite and a biotite gneiss were deformed at conditions below, at and above their fluid‐absent solidus. For the metapelite, temperatures ranged between 650 and 800 °C at Pc=700 MPa to investigate the muscovite‐dehydration melting reaction. For the biotite gneiss, temperatures ranged between 850 and 950 °C at Pc=1000 MPa to explore biotite dehydration‐melting under lower crustal conditions. Deformation for both sets of experiments was performed at the same strain rate (ε.) 1.37×10?5 s?1. In the presence of deformation, the positive ΔV and associated high dilational strain of the muscovite dehydration‐melting reaction produces an increase in melt pore pressure with partial melting of the metapelite. In contrast, the biotite dehydration‐melting reaction is not associated with a large dilational strain and during deformation and partial melting of the biotite gneiss melt pore pressure builds more gradually. Due to the different rates in pore pressure increase, melt‐enhanced deformation microstructures reflect the different dehydration melting reactions themselves. Permeability development in the two rocks differs because grain boundaries control melt distribution to a greater extent in the gneiss. Muscovite‐dehydration melting may develop melt pathways at low melt fractions due to a larger volume of melt, in comparison with biotite‐dehydration melting, generated at the solidus. This may be a viable physical mechanism in which rapid melt segregation from a metapelitic source rock can occur. Alternatively, the results from the gneiss experiments suggest continual draining of biotite‐derived magma from the lower crust with melt migration paths controlled by structural anisotropies in the protolith.  相似文献   

20.
岩浆岩中的熔体包裹体   总被引:15,自引:1,他引:15  
夏林圻 《地学前缘》2002,9(2):403-414
熔体包裹体是岩浆岩矿物生长过程中捕获的天然岩浆珠滴 ,它们有效地保存了大量有关其主矿物形成时周围岩浆介质的物理化学信息 ,所以它们是其主矿物结晶演化史的忠实记录员 ,它们能够提供岩浆系统成分和演化的重要信息。文中对熔体包裹体研究的若干基本原理进行了讨论 ,它们涉及 :(1)熔体包裹体的一般特征 ;(2 )熔体包裹体封闭过程中和封闭后的演化 ;(3)熔体包裹体的均一化研究 ;(4 )熔体包裹体化学成分和挥发组分研究。熔体包裹体研究可以对岩浆岩石学中的一些重要问题进行更为深入的探索 :(1)重建天然岩浆结晶演化的热历史 ;(2 )提供有关岩浆沿下降液相线的成分数据 ;(3)查明天然岩浆结晶演化过程中化学成分的变迁规律 ;(4 )解决岩浆岩石学中的一些疑难问题 ,如岩浆不混溶作用、岩浆混合作用、岩浆混染作用、岩浆中硫的性状、地幔部分熔融和地幔交代作用等方面的问题。将熔体包裹体数据和常规的岩石学、地球化学和实验岩石学信息综合一体 ,可以提高我们模拟岩浆作用过程的能力。熔体包裹体研究已经成为现代岩浆岩石学的一个独立的分支 ,其前景十分广阔。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号