首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amoeboid olivine aggregates (AOAs) are the most common type of refractory inclusions in CM, CR, CH, CV, CO, and ungrouped carbonaceous chondrites Acfer 094 and Adelaide; only one AOA was found in the CBb chondrite Hammadah al Hamra 237 and none were observed in the CBa chondrites Bencubbin, Gujba, and Weatherford. In primitive (unaltered and unmetamorphosed) carbonaceous chondrites, AOAs consist of forsterite (Fa<2), Fe, Ni-metal (5-12 wt% Ni), and Ca, Al-rich inclusions (CAIs) composed of Al-diopside, spinel, anorthite, and very rare melilite. Melilite is typically replaced by a fine-grained mixture of spinel, Al-diopside, and ±anorthite; spinel is replaced by anorthite. About 10% of AOAs contain low-Ca pyroxene replacing forsterite. Forsterite and spinel are always 16O-rich (δ17,18O∼−40‰ to −50‰), whereas melilite, anorthite, and diopside could be either similarly 16O-rich or 16O-depleted to varying degrees; the latter is common in AOAs from altered and metamorphosed carbonaceous chondrites such as some CVs and COs. Low-Ca pyroxene is either 16O-rich (δ17,18O∼−40‰) or 16O-poor (δ17,18O∼0‰). Most AOAs in CV chondrites have unfractionated (∼2-10×CI) rare-earth element patterns. AOAs have similar textures, mineralogy and oxygen isotopic compositions to those of forsterite-rich accretionary rims surrounding different types of CAIs (compact and fluffy Type A, Type B, and fine-grained, spinel-rich) in CV and CR chondrites. AOAs in primitive carbonaceous chondrites show no evidence for alteration and thermal metamorphism. Secondary minerals in AOAs from CR, CM, and CO, and CV chondrites are similar to those in chondrules, CAIs, and matrices of their host meteorites and include phyllosilicates, magnetite, carbonates, nepheline, sodalite, grossular, wollastonite, hedenbergite, andradite, and ferrous olivine.Our observations and a thermodynamic analysis suggest that AOAs and forsterite-rich accretionary rims formed in 16O-rich gaseous reservoirs, probably in the CAI-forming region(s), as aggregates of solar nebular condensates originally composed of forsterite, Fe, Ni-metal, and CAIs. Some of the CAIs were melted prior to aggregation into AOAs and experienced formation of Wark-Lovering rims. Before and possibly after the aggregation, melilite and spinel in CAIs reacted with SiO and Mg of the solar nebula gas enriched in 16O to form Al-diopside and anorthite. Forsterite in some AOAs reacted with 16O-enriched SiO gas to form low-Ca pyroxene. Some other AOAs were either reheated in 16O-poor gaseous reservoirs or coated by 16O-depleted pyroxene-rich dust and melted to varying degrees, possibly during chondrule formation. The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into magnesian (Type I) chondrules. Secondary mineralization and at least some of the oxygen isotope exchange in AOAs from altered and metamorphosed chondrites must have resulted from alteration in the presence of aqueous solutions after aggregation and lithification of the chondrite parent asteroids.  相似文献   

2.
The petrography and mineral chemistry of 110 Ca-, Al-rich inclusions (CAIs) and 9 Ca- and/or Al-rich amoeboid olivine aggregates (AOAs) from the Ningqiang carbonaceous chondrite are reported. These CAIs are referred to as hibonite-bearing and hibonite-free melilite-spinel-rich (Type A), and spinel-pyroxene inclusions. Melilite is more gehlenitic in the hibonite-bearing Type As than in the other two types, and all of them vary within a range of Åk0-30. Modal compositions of the three types of CAIs overlap with each other, and make up a continuum with wide ranges of melilite: spinel: diopside. The diopside occurs as rims on the CAIs or their individual concentric objects. The 9 AOAs contain spinel ± diopside ± anorthite in the centers of the aggregates; the spinel grains rimmed by diopside in the centers are similar to the spinel-pyroxene inclusions. Bulk compositions of these CAIs vary along the condensation trajectory, with the hibonite-bearing Type As plotting at the beginning followed by hibonite-free Type As then by spinel-pyroxene inclusions as temperature decreases. Bulk compositions of the AOAs are close to the lowest temperature condensation trajectory. Except for a few with compact textures, most of the Type As and spinel-pyroxene inclusions are fluffy aggregates, probably pristine vapor-solid condensates of the nebula.The bulk compositions of the Type As appear to overlap with the range of most melilite-Ti-Al-clinopyroxene-rich (Type B) inclusions. Hence, crystallization of liquids produced by melting the Type As can form Type B inclusions, without significant evaporative loss of MgO or SiO2. A few Type Bs have bulk compositions deviating from the range of their proposed precursors, and may have suffered significant evaporation, as suggested in previous studies.  相似文献   

3.
Fine-grained Ca-Al-rich inclusions (FGIs) in Yamato-81020 (CO3.0) and Kainsaz (CO3.1-CO3.2) chondrites have been studied by secondary ion mass spectrometry. The FGIs from Yamato-81020 consist of aggregates of hibonite, spinel, melilite, anorthite, diopside and olivine grains with no petrographic evidence of alteration. In contrast, the FGIs from Kainsaz commonly contain alteration products such as nepheline. From replacement textures and chemical compositions of altered and unaltered FGIs, we conclude that the alteration products formed by decomposition of melilite and anorthite. All phases in the Yamato-81020 FGIs are enriched in 16O, with δ17, 18O = ∼−40‰ except for one FGI that experienced melting. Oxygen isotopic compositions of melilite, anorthite, some spinel and diopside in Kainsaz FGIs changed from δ17, 18O = ∼−40‰ toward 0‰ by aqueous alteration. Alteration products in FGIs are depleted in 16O relative to primary phases, with δ17, 18O = ∼0‰. These results show that FGIs in CO chondrites commonly had 16O-rich compositions in the solar nebula. The original 16O-rich FGIs were modified to 16O-poor compositions during aqueous alteration in the parent body.  相似文献   

4.
The equilibrium crystallization sequence at 1 atmosphere in air of a melt corresponding in composition to the average composition of Type B Ca-Al-rich inclusions from the Allende meteorite is: spinel (1550°C) → melilite (1400°C; Åk22) → anorthite (1260°C) → Ti-Al-rich clinopyroxene (1230°C; “Ti-fassaite”). The melilite becomes increasingly åkermanitic with decreasing temperature. The pyroxene is similar in composition to fassaites from Type B inclusions. Preliminary results suggest that the crystallization sequence is similar at oxygen fugacities near the iron-wüstite buffer.The results of these experiments have been integrated with available phase equilibrium data in the system CaO-MgO-Al2O3-SiO2TiO2 and a phase diagram for predicting the crystallization sequences of liquids with compositions of coarse-grained Ca-Al-rich inclusions has been developed.Available bulk compositions of coarse-grained inclusions form a well-defined trend in terms of major elements, extending from Type A and Bl inclusions near the spinel-melilite join to more pyroxene-rich Type B2 inclusions. The trend deviates from the expected sequence of solid condensates from a nebular gas at P = 10?3 atm if pure diopside is assumed to be the clinopyroxene that condenses. The Type A-B1 end of the trend is similar in composition to calculated equilibrium condensates at 1202–1227°C and the trend as a whole parallels the sequence of condensates expected from diopside condensation at ~ 1170°C. The trend is consistent to first order with the condensation of solid Ti-rich fassaite in place of pure diopside at higher temperatures than those at which pure diopside is predicted to condense. Partially molten condensates may be likely in this case or if the nebular pressure is higher than 10?3 atm.  相似文献   

5.
Amoeboid olivine aggregates (AOAs) from the reduced CV chondrites Efremovka, Vigarano, and Leoville consist of forsteritic olivine, FeNi-metal and a refractory component composed of spinel, Al-diopside, ±anorthite. Secondary ferrous olivine and alkali-rich minerals (nepheline and sodalite), commonly observed in the oxidized CVs, are rare. Mineralogy and chemical compositions of AOAs are similar to those predicted by equilibrium thermodynamic condensation models, suggesting that AOAs formed primarily by gas-solid condensation over a narrow temperature range, slightly below the temperatures over which most Ca-Al-rich inclusions (CAIs) formed. AOAs in the reduced CVs preserve a 1st-generation 16O-rich signal (δ17,18O ∼ −40‰) similar to that observed in many CAIs, suggesting that these refractory objects originated from a common source in the solar nebula. In fact AOAs and many fine-grained CAIs may have formed by the same processes, but at slightly different temperatures, and can be considered a single class of refractory objects.Alteration of the AOAs is manifested by differing extents of 16O-depletion in original AOA minerals, FeO-enrichment in olivine, and formation of interstitial very fine grained Na-bearing phases. From the six AOAs and one fine-grained, melilite-pyroxene-rich CAI examined in this study, five distinct patterns of alteration were identified. (1) One unaltered AOA from Vigarano is characterized by 16O-rich forsterite without FeO-rich rims and interstitial Na-bearing phases. (2) Weak alteration in the melilite-pyroxene-rich CAI is characterized by incomplete 16O-depletion in some melilite and precipitation of Na-bearing phases near the CAI rim. (3) Oxygen isotopic composition and mineralogy are correlated in two AOAs from Leoville with 16O-rich olivine, 16O-poor anorthite and a range of intermediate compositions in Al-diopside. This pattern is consistent with model diffusion between original grains and a 16O-poor reservoir during a relatively short-term (<60 yr), high-temperature (900-1100°C) event. (4) Original forsterite has been enriched in FeO, but remained 16O-rich in one AOA from Vigarano. This result is consistent with the slower rate of diffusion of O than Fe and Mg in olivine. At least some interstitial phases are 16O-rich, and Na-bearing phases are abundant in this AOA. (5) In contrast, oxygen isotopic composition and Fo-content are correlated in two AOAs from Efremovka. The olivine in these AOAs tends to have forsteritic 16O-rich cores and FeO-rich 16O-depleted rims. The general correlation between oxygen isotopic composition and Fo-content is difficult to model by diffusion, and may have formed instead by aqueous dissolution and precipitation along the margins of preexisting olivine grains.Independent evidence for aqueous alteration of the Efremovka AOAs is provided by OH-rich signals detected during ion beam sputtering of some of the 16O-poor olivine. Elevated 16OH-count rates and order of magnitude increases in 16OH detected during single analyses reflect trapping of an aqueous phase in 16O-depleted olivine. An elevated 16OH signal was also detected in one analysis of relatively 16O-poor melilite in the melilite-pyroxene CAI from Vigarano, suggesting that this object also was altered by aqueous fluid.  相似文献   

6.
We report on the mineralogy, petrography, and in situ oxygen isotopic composition of twenty-five ultrarefractory calcium-aluminum-rich inclusions (UR CAIs) in CM2, CR2, CH3.0, CV3.1–3.6, CO3.0–3.6, MAC 88107 (CO3.1-like), and Acfer 094 (C3.0 ungrouped) carbonaceous chondrites. The UR CAIs studied are typically small, < 100 μm in size, and contain, sometimes dominated by, Zr-, Sc-, and Y-rich minerals, including allendeite (Sc4Zr3O12), and an unnamed ((Ti,Mg,Sc,Al)3O5) mineral, davisite (CaScAlSiO6), eringaite (Ca3(Sc,Y,Ti)2Si3O12), kangite ((Sc,Ti,Al,Zr,Mg,Ca,□)2O3), lakargiite (CaZrO3), warkite (Ca2Sc6Al6O20), panguite ((Ti,Al,Sc,Mg,Zr,Ca)1.8O3), Y-rich perovskite ((Ca,Y)TiO3), tazheranite ((Zr,Ti,Ca)O2−x), thortveitite (Sc2Si2O7), zirconolite (orthorhombic CaZrTi2O7), and zirkelite (cubic CaZrTi2O7). These minerals are often associated with 50–200 nm-sized nuggets of platinum group elements. The UR CAIs occur as: (i) individual irregularly-shaped, nodular-like inclusions; (ii) constituents of unmelted refractory inclusions – amoeboid olivine aggregates (AOAs) and Fluffy Type A CAIs; (iii) relict inclusions in coarse-grained igneous CAIs (forsterite-bearing Type Bs and compact Type As); and (iv) relict inclusions in chondrules. Most UR CAIs, except for relict inclusions, are surrounded by single or multilayered Wark-Lovering rims composed of Sc-rich clinopyroxene, ±eringaite, Al-diopside, and ±forsterite. Most of UR CAIs in carbonaceous chondrites of petrologic types 2–3.0 are uniformly 16O-rich (Δ17O ∼ −23‰), except for one CH UR CAI, which is uniformly 16O-depleted (Δ 17O ∼ −5‰). Two UR CAIs in Murchison have heterogeneous Δ17O. These include: an intergrowth of corundum (∼ ‒24‰) and (Ti,Mg,Sc,Al)3O5 (∼ 0‰), and a thortveitite-bearing CAI (∼ −20 to ∼ ‒5‰); the latter apparently experienced incomplete melting during chondrule formation. In contrast, most UR CAIs in metamorphosed chondrites are isotopically heterogeneous (Δ17O ranges from ∼ −23‰ to ∼ −2‰), with Zr- and Sc-rich oxides and silicates, melilite and perovskite being 16O-depleted to various degrees relative to uniformly 16O-rich (Δ17O ∼ −23‰) hibonite, spinel, Al-diopside, and forsterite. We conclude that UR CAIs formed by evaporation/condensation, aggregation and, in some cases, melting processes in a 16O-rich gas of approximately solar composition in the CAI-forming region(s), most likely near the protoSun, and were subsequently dispersed throughout the protoplanetary disk. One of the CH UR CAIs formed in an 16O-depleted gaseous reservoir providing an evidence for large variations in Δ17O of the nebular gas in the CH CAIs-forming region. Subsequently some UR CAIs experienced oxygen isotopic exchange during melting in 16O-depleted regions of the disk, most likely during the epoch of chondrule formation. In addition, UR CAIs in metamorphosed CO and CV chondrites, and, possibly, the corundum-(Ti,Mg,Sc,Al)3O5 intergrowth in Murchison experienced O-isotope exchange with aqueous fluids on the CO, CV, and CM chondrite parent asteroids. Thus, both nebular and planetary exchange with 16O-depleted reservoirs occurred.  相似文献   

7.
Lightly altered Al-rich inclusions in amoeboid olivine aggregates have cores containing primary melilite + fassaite + spinel + perovskite and no secondary alteration products. In moderately altered inclusions, whose cores now contain only fassaite + spinel + perovskite, melilite was replaced by a fine-grained mixture of grossular + anorthite + feldspathoids and perovskite was partially replaced by ilmenite. In heavily altered inclusions, fassaite has been replaced by a mixture of phyllosilicates + ilmenite and the remaining primary phases are spinel ± perovskite. In very heavily altered inclusions, no primary phases remain, the spinel having reacted to form either phyllosilicates or a mixture of olivine + feldspathoids. This sequence of alteration reactions may reflect successively lower solar nebular equilibration temperatures. During alteration, SiO2, Na2O, K2O, FeO, Cr2O3, H2O and Cl were introduced into the inclusions and CaO was lost. MgO may have been lost during the melilite reaction and added during formation of phyllosilicates. Electron microprobe analyses indicate that the phyllosilicates are a mixture of Na-rich phlogopite and chlorite or Alrich serpentine. Thermodynamic calculations suggest that, at a solar nebular water fugacity of 10−6, Na-rich phlogopite could have formed from fassaite at ~470 K and chlorite from Na-rich phlogopite at ~328 K. Olivine mantling Al-rich inclusions is not serpentinized, suggesting that these objects stopped equilibrating with the nebular gas above 274 K.  相似文献   

8.
The oxygen isotopic micro-distributions within and among minerals in a coarse-grained Ca, Al-rich inclusion (CAI), 7R-19-1 from the Allende meteorite, were measured by in situ using secondary ion mass spectrometry (SIMS). All values of O isotopic ratios in 7R-19-1 minerals fall along the carbonaceous chondrite anhydrous mineral mixing (CCAM) line on a δ17OSMOW vs. δ18OSMOW plot. Major refractory minerals (spinel, fassaite and melilite) in 7R-19-1 showed large negative anomalies of Δ17O in the order, spinel (−21‰) > 16O-rich melilite (∼−18‰) > fassaite (−15 to +1‰) > 16O-poor melilite (−8 to +2‰). However, the lower limit values of Δ17O are similar at about −21‰, a value commonly observed in CAIs. The similarity in the extreme values of the isotope anomaly anomalies suggests that crystallization of all CAIs started from an 16O enrichment of 21‰ (Δ17O) relative to terrestrial values. The order of the O isotopic anomalies observed for 7R-19-1, except for 16O-poor melilite, is parallel to the crystallization sequence determined by experiment from CAI liquid (Stolper, 1982), indicating that the O isotopic exchange in 7R-19-1 occurred between CAI melt and surrounding gas while 7R-19-1 was crystallizing from the 16O enriched CAI liquid (∼−21‰ in Δ17O) in the 16O-poor solar nebula. However, the a single crystallization sequence during the cooling stage cannot explain the existence of 16O-poor melilite. The presence of 16O-poor melilite suggests that multiple heating events occurred during CAI formation. The sharp contact between 16O-rich and 16O-poor melilite crystals and within 16O-rich melilite indicates that these multiple heatings occurred quickly. Based on the O isotopic and chemical compositions, fassaite crystals were aggregates of relic crystals formed from CAI melt whichthat have had various O isotopic compositions from the remelting processes. The results of intra-mineral distributions of O isotopes also support multiple heating events during CAI formation.  相似文献   

9.
We review the oxygen isotopic compositions of minerals in chondrules and compound objects composed of a chondrule and a refractory inclusion, and bulk oxygen isotopic compositions of chondrules in unequilibrated ordinary, carbonaceous, enstatite, and Kakangari-like chondrites, focusing on data acquired using secondary ion mass-spectrometry and laser fluorination coupled with mass-spectrometry over the last decade. Most ferromagnesian chondrules from primitive (unmetamorphosed) chondrites are isotopically uniform (within 3–4‰ in Δ17O) and depleted in 16O (Δ17O>−7‰) relative to amoeboid olivine aggregates (AOAs) and most calcium–aluminum-rich inclusions (CAIs) (Δ17O<−20‰), suggesting that these classes of objects formed in isotopically distinct gaseous reservoirs, 16O-poor and 16O-rich, respectively. Chondrules uniformly enriched in 16O (Δ17O<−15‰) are exceptionally rare and have been reported only in CH chondrites. Oxygen isotopic heterogeneity in chondrules is mainly due to the presence of relict grains. These appear to consist of chondrules of earlier generations and rare refractory inclusions; with rare exceptions, the relict grains are 16O-enriched relative to chondrule phenocrysts and mesostasis. Within a chondrite group, the magnesium-rich (Type I) chondrules tend to be 16O-enriched relative to the ferrous (Type II) chondrules. Aluminum-rich chondrules in ordinary, enstatite, CR, and CV chondrites are generally 16O-enriched relative to ferromagnesian chondrules. No systematic differences in oxygen isotopic compositions have been found among these chondrule types in CB chondrites. Aluminum-rich chondrules in carbonaceous chondrites often contain relict refractory inclusions. Aluminum-rich chondrules with relict CAIs have heterogeneous oxygen isotopic compositions (Δ17O ranges from −20‰ to 0‰). Aluminum-rich chondrules without relict CAIs are isotopically uniform and have oxygen isotopic compositions similar to, or approaching, those of ferromagnesian chondrules. Phenocrysts and mesostases of the CAI-bearing chondrules show no clear evidence for 16O-enrichment compared to the CAI-free chondrules. Spinel, hibonite, and forsterite of the relict refractory inclusions largely retained their original oxygen isotopic compositions. In contrast, plagioclase and melilite of the relict CAIs experienced melting and 16O-depletion to various degrees, probably due to isotopic exchange with an 16O-poor nebular gas. Several igneous CAIs experienced isotopic exchange with an 16O-poor nebular gas during late-stage remelting in the chondrule-forming region. On a three-isotope diagram, bulk oxygen isotopic compositions of most chondrules in ordinary, enstatite, and carbonaceous chondrites plot above, along, and below the terrestrial fractionation line, respectively. Bulk oxygen isotopic compositions of chondrules in altered and/or metamorphosed chondrites show evidence for mass-dependent fractionation, reflecting either interaction with a gaseous/fluid reservoir on parent asteroids or open-system thermal metamorphism. Bulk oxygen isotopic compositions of chondrules and oxygen isotopic compositions of individual minerals in chondrules and refractory inclusions from primitive chondrites plot along a common line of slope of 1, suggesting that only two major reservoirs (gas and solids) are needed to explain the observed variations. However, there is no requirement that each had a permanently fixed isotopic composition. The absolute (207Pb–206Pb) and relative (27Al–26Mg) chronologies of CAIs and chondrules and the differences in oxygen isotopic compositions of most chondrules (16O-poor) and most refractory inclusions (16O-rich) can be interpreted in terms of isotopic self-shielding during UV photolysis of CO in the initially 16O-rich (Δ17O−25‰) parent molecular cloud or protoplanetary disk. According to these models, the UV photolysis preferentially dissociates C17O and C18O in the parent molecular cloud and in the peripheral zones of the protoplanetary disk. If this process occurs in the stability field of water ice, the released atomic 17O and 18O are incorporated into water ice, while the residual CO gas becomes enriched in 16O. During the earliest stages of evolution of the protoplanetary disk, the inner solar nebula had a solar H2O/CO ratio and was 16O-rich. During this time, AOAs and the 16O-rich CAIs and chondrules formed. Subsequently, the inner solar nebula became H2O- and 16O-depleted, because ice-rich dust particles, which were depleted in 16O, agglomerated outside the snowline (5 AU), drifted rapidly towards the Sun and evaporated. During this time, which may have lasted for 3 Myr, most chondrules and the 16O-depleted igneous CAIs formed. We infer that most chondrules formed from isotopically heterogeneous, but 16O-depleted precursors, and experienced isotopic exchange with an 16O-poor nebular gas during melting. Although the relative roles of the chondrule precursor materials and gas–melt isotopic exchange in establishing oxygen isotopic compositions of chondrules have not been quantified yet, mineralogical, chemical, and isotopic evidence indicate that Type I chondrules may have formed in chemical and isotopic equilibrium with nebular gas of variable isotopic composition. Whether these variations were spatial or temporal are not known yet.  相似文献   

10.
The coarse-grained, igneous, anorthite-rich (Type C) CAIs from Allende studied (100, 160, 6-1-72, 3529-40, CG5, ABC, TS26, and 93) have diverse textures and mineralogies, suggesting complex nebular and asteroidal formation histories. CAIs 100, 160, 6-1-72, and 3529-40 consist of Al,Ti-diopside (fassaite; 13-23 wt% Al2O3, 2-14 wt% TiO2), Na-bearing åkermanitic melilite (0.1-0.4 wt% Na2O; Åk30-75), spinel, and fine-grained (∼5-10 μm) anorthite groundmass. Most of the fassaite and melilite grains have “lacy” textures characterized by the presence of abundant rounded and prismatic inclusions of anorthite ∼5-10 μm in size. Lacy melilite is pseudomorphed to varying degrees by grossular, monticellite, and pure forsterite or wollastonite. CAI 6-1-72 contains a relict Type B CAI-like portion composed of polycrystalline gehlenitic melilite (Åk10-40), fassaite, spinel, perovskite, and platinum-group element nuggets; the Type B-like material is overgrown by lacy melilite and fassaite. Some melilite and fassaite grains in CAIs 100 and 160 are texturally similar to those in the Type B portion of 6-1-72. CAIs ABC and TS26 contain relict chondrule fragments composed of forsteritic olivine and low-Ca pyroxene; CAI 93 is overgrown by a coarse-grained igneous rim of pigeonite, augite, and anorthitic plagioclase. These three CAIs contain very sodium-rich åkermanitic melilite (0.4-0.6 wt% Na2O; Åk63-74) and Cr-bearing Al,Ti-diopside (up to 1.6 wt% Cr2O3, 1-23 wt% Al2O, 0.5-7 wt% TiO2). Melilite and anorthite in the Allende Type C CAI peripheries are replaced by nepheline and sodalite, which are crosscut by andradite-bearing veins; spinel is enriched in FeO. The CAI fragment CG5 is texturally and mineralogically distinct from other Allende Type Cs. It is anorthite-poor and very rich in spinel poikilitically enclosed by Na-free gehlenitic melilite (Åk20-30), fassaite, and anorthite; neither melilite nor pyroxene have lacy textures; secondary minerals are absent. The Al-rich chondrules 3655b-2 and 3510-7 contain aluminum-rich and ferromagnesian portions. The Al-rich portions consist of anorthitic plagioclase, Al-rich low-Ca pyroxene, and Cr-bearing spinel; the ferromagnesium portions consist of fosteritic olivine, low-Ca pyroxene, and opaque nodules.We conclude that Type C CAIs 100, 160, 6-1-72, and 3529-40 formed by melting of coarse-grained Type B-like CAIs which experienced either extensive replacement of melilite and spinel mainly by anorthite and diopside (traces of secondary Na-bearing minerals, e.g., nepheline or sodalite, might have formed as well), or addition of silica and sodium during the melting event. CG5 could have formed by melting of fine-grained spinel-melilite CAI with melilite and spinel partially replaced anorthite and diopside. CAIs ABC, 93, and TS-26 experienced melting in the chondrule-forming regions with addition of chondrule-like material, such as forsteritic olivine, low-Ca pyroxene, and high-Ca pyroxene. Anorthite-rich chondrules formed by melting of the Al-rich (Type C CAI-like) precursors mixed with ferromagnesian, Type I chondrule-like precursors. The Allende Type C CAIs and Al-rich chondrules experienced fluid-assisted thermal metamorphism, which resulted in pseudomorphic replacement of melilite and anorthite by grossular, monticellite, and forsterite (100, 160, 6-1-72, 3592-40) or by grossular, monticellite, and wollastonite (ABC, 93, TS-26). The pseudomorphic replacement was followed or accompanied by iron-alkali metasomatic alteration resulting in replacement of melilite and anorthite by nepheline and sodalite, enrichment of spinel in FeO, and precipitation of salite-hedenbergite pyroxenes, wollastonite, and andradite in fractures and pores in and around CAIs.  相似文献   

11.
Textural and chemical features of five coarse-grained, calcium-aluminum-rich inclusions from the Allende meteorite indicate that some of the melilite in these inclusions was formed by a secondary metamorphic event and not by primary crystallization from a melt or by a sequential nebular condensation process. These inclusions contain embayed pyroxene surrounded by melilite. Physically separated pyroxene crystals are often in optical continuity indicating that they were once part of larger single crystals that have been partly replaced by melilite. Other evidences of metamorphism include reaction textures between melilite and spinel, and metamorphic textures such as kink-band-like features, lobate sutured grain boundaries, and 120° triple-points. This type of metamorphic process requires the addition of Ca which we propose came from calcite or by introduction of a fluid phase. We believe that the most likely environment for this metamorphic process is on a small planetary body, and not in the solar nebula. The results of this study are compatible with oxygen isotopic heterogeneities within CAI, and provide a mechanism for producing lower temperature alteration phases and the rim phases found in these inclusions. We conclude that planetary processes must thus be considered in the formation history of CAI, and that it is necessary to reconsider the classification system of these objects in light of the replacement process proposed here.  相似文献   

12.
富钙长石-橄榄石包体与其他部分典型包体W-L边的成因   总被引:1,自引:1,他引:0  
球粒陨石中的富Ca、Al包体(简称CAI)形成于星云演化的最初始阶段,保存了大量星云形成和演化的各种信息。研究认为,包体的成因主要包括星云直接凝聚和熔融结晶,少部分甚至经历过高温蒸发过程。部分CAI最外层具有由一种或几种矿物组成的Warking-Lovering边(简称为W-L边),CAI和其W-L边对于认识早期星云环境和界定CAI的形成时间等均具有重要意义。目前,对于W-L边的形成过程研究并不深入,且一直存在争议。本文主要介绍了三个典型包体:C#1(富钙长石-橄榄石包体)、GRV 022459-2RI5(A型包体)和GRV 021579-3RI5(富尖晶石球粒状包体)及其W-L边的矿物岩石学和氧同位素组成特征。C#1包体明显经历过熔融结晶过程,W-L边氧同位素组成具有与包体内部矿物相似的富~(16)O同位素特征,表明W-L边的成因与包体的形成过程密切相关,形成于同一富~(16)O同位素组成区域,且W-L边属于包体熔融结晶过程后期的产物。矿物岩石学特征表明,GRV 022459-2RI5属于星云直接凝聚形成,其W-L边为包体形成过程最晚期星云凝聚产物。GRV021579-3RI5经历过熔融结晶过程,其W-L边为包体结晶最后阶段的产物。  相似文献   

13.
Amoeboid olivine aggregates (AOAs) in primitive carbonaceous chondrites consist of forsterite (Fa<2), Fe,Ni-metal, spinel, Al-diopside, anorthite, and rare gehlenitic melilite (Åk<15). ∼10% of AOAs contain low-Ca pyroxene (Fs1-3Wo1-5) that is in corrosion relationship with forsterite and is found in three major textural occurrences: (i) thin (<15 μm) discontinuous layers around forsterite grains or along forsterite grain boundaries in AOA peripheries; (ii) 5-10-μm-thick haloes and subhedral grains around Fe,Ni-metal nodules in AOA peripheries, and (iii) shells of variable thickness (up to 70 μm), commonly with abundant tiny (3-5 μm) inclusions of Fe,Ni-metal grains, around AOAs. AOAs with the low-Ca pyroxene shells are compact and contain euhedral grains of Al-diopside surrounded by anorthite, suggesting small (10%-20%) degree of melting. AOAs with other textural occurrences of low-Ca pyroxene are rather porous. Forsterite grains in AOAs with low-Ca pyroxene have generally 16O-rich isotopic compositions (Δ17O < −20‰). Low-Ca pyroxenes of the textural occurrences (i) and (ii) are 16O-enriched (Δ17O < −20‰), whereas those of (iii) are 16O-depleted (Δ17O = −6‰ to −4‰). One of the extensively melted (>50%) objects is texturally and mineralogically intermediate between AOAs and Al-rich chondrules. It consists of euhedral forsterite grains, pigeonite, augite, anorthitic mesostasis, abundant anhedral spinel grains, and minor Fe,Ni-metal; it is surrounded by a coarse-grained igneous rim largely composed of low-Ca pyroxene with abundant Fe,Ni-metal-sulfide nodules. The mineralogical observations suggest that only spinel grains in this igneous object were not melted. The spinel is 16O-rich (Δ17O ∼ −22‰), whereas the neighboring plagioclase mesostasis is 16O-depleted (Δ17O ∼ −11‰).We conclude that AOAs are aggregates of solar nebular condensates (forsterite, Fe,Ni-metal, and CAIs composed of Al-diopside, anorthite, spinel, and ±melilite) formed in an 16O-rich gaseous reservoir, probably CAI-forming region(s). Solid or incipiently melted forsterite in some AOAs reacted with gaseous SiO in the same nebular region to form low-Ca pyroxene. Some other AOAs appear to have accreted 16O-poor pyroxene-normative dust and experienced varying degrees of melting, most likely in chondrule-forming region(s). The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into chondrules. The original 16O-rich signature of the precursor materials of such chondrules is preserved only in incompletely melted grains.  相似文献   

14.
The aluminum-rich (>10 wt% Al2O3) objects in the CH carbonaceous chondrite North West Africa (NWA) 739 include Ca,Al-rich inclusions (CAIs), Al-rich chondrules, and isolated mineral grains (spinel, plagioclase, glass). Based on the major mineralogy, 54 refractory inclusions found in about 1 cm2 polished section of NWA 739 can be divided into hibonite-rich (16%), grossite-rich (26%), melilite-rich (28%), spinel-pyroxene-rich (16%) CAIs, and amoeboid olivine aggregates, (AOA's, 17%). Most CAIs are rounded, 25–185 μm (average=70 μm) in apparent diameter, contain abundant, tiny perovskite grains, and typically surrounded by a single- or double-layered rim composed of melilite and/or Al-diopside; occasionally, layers of spinel+hibonite and forsterite are observed. The AOAs are irregularly shaped, 100–250 μm (average=175 μm) in size, and consist of forsterite, Fe,Ni-metal, and CAIs composed of Al-diopside, anorthite, and minor spinel. One AOA contains compact, rounded melilite-spinel-perovskite CAIs and low-Ca pyroxene replacing forsterite. The Al-rich (>10 wt% bulk Al2O3) chondrules are divided into Al-diopside-rich and plagioclase-rich. The Al-diopside-rich chondrules, 50–310 μm (average=165 μm) in apparent diameter, consist of Al-diopside, skeletal forsterite, spinel, ±Al-rich low-Ca pyroxene, and ±mesostasis. The plagioclase-rich chondrules, 120–455 μm (average=285 μm) in apparent diameter, are composed of low-Ca and high-Ca pyroxenes, forsterite, anorthitic plagioclase, Fe,Ni-metal nodules, and mesostasis. The isolated spinel occurs as coarse, 50–125 μm in size, subhedral grains, which are probably the fragments of Al-diopside chondrules. The isolated plagioclase grains are too coarse (60–120 μm) to have been produced by disintegration of chondrules or CAIs; they range in composition from nearly pure anorthite to nearly pure albite; their origin is unclear. The Al-rich objects show no evidence for Fe-alkali metasomatic or aqueous alteration; the only exception is an Al-rich chondrule fragment with anorthite replaced by nepheline. They are texturally and mineralogically similar to those in other CH chondrites studied (Acfer 182, ALH85085, PAT91467, NWA 770), but are distinct from the Al-rich objects in other chondrite groups (CM, CO, CR, CV). The CH CAIs are dominated by very refractory minerals, such as hibonite, grossite, perovskite and gehlenitic melilite, and appear to have experienced very low degrees of high-temperature alteration reactions. These include replacement of grossite by melilite, of melilite by anorthite, diopside, and spinel, and of forsterite by low-Ca pyroxene. Only a few CAIs show evidence for melting and multilayered Wark-Lovering rims. These observations may suggest that CH CAIs experienced rather simple formation history and escaped extensive recycling. In order to preserve the high-temperature mineral assemblages, they must have been efficiently isolated from the hot nebular region, like some chondrules and the zoned Fe,Ni-metal grains in CH chondrites.  相似文献   

15.
A correlation of petrography, mineral chemistry and in situ oxygen isotopic compositions of fine-grained olivine from the matrix and of fine- and coarse-grained olivine from accretionary rims around Ca-Al-rich inclusions (CAIs) and chondrules in CV chondrites is used here to constrain the processes that occurred in the solar nebula and on the CV parent asteroid. The accretionary rims around Leoville, Vigarano, and Allende CAIs exhibit a layered structure: the inner layer consists of coarse-grained, forsteritic and 16O-rich olivine (Fa1-40 and Δ17O = −24‰ to −5‰; the higher values are always found in the outer part of the layer and only in the most porous meteorites), whereas the middle and the outer layers contain finer-grained olivines that are more fayalitic and 16O-depleted (Fa15-50 and Δ17O = −18‰ to +1‰). The CV matrices and accretionary rims around chondrules have olivine grains of textures, chemical and isotopic compositions similar to those in the outer layers of accretionary rims around CAIs. There is a correlation between local sample porosity and olivine chemical and isotopic compositions: the more compact regions (the inner accretionary rim layer) have the most MgO- and 16O-rich compositions, whereas the more porous regions (outer rim layers around CAIs, accretionary rims around chondrules, and matrices) have the most MgO- and 16O-poor compositions. In addition, there is a negative correlation of olivine grain size with fayalite contents and Δ17O values. However, not all fine-grained olivines are FeO-rich and 16O-poor; some small (<1 μm in Leoville and 5-10 μm in Vigarano and Allende) ferrous (Fa>20) olivine grains in the outer layers of the CAI accretionary rims and in the matrix show significant enrichments in 16O (Δ17O = −20‰ to −10‰). We infer that the inner layer of the accretionary rims around CAIs and, at least, some olivine grains in the finer portions of accretionary rims and CV matrices formed in an 16O-rich gaseous reservoir, probably in the CAI-forming region. Grains in the outer layers of the CAI accretionary rims and in the rims around chondrules as well as matrix may have also originated as 16O-rich olivine. However, these olivines must have exchanged O isotopes to variable extents in the presence of an 16O-poor reservoir, possibly the nebular gas in the chondrule-forming region(s) and/or fluids in the parent body. The observed trend in isotopic compositions may arise from mixtures of 16O-rich forsterites with grain overgrowths or newly formed grains of 16O-poor fayalitic olivines formed during parent body metamorphism. However, the observed correlations of chemical and isotopic compositions of olivine with grain size and local porosity of the host meteorite suggest that olivine accreted as a single population of 16O-rich forsterite and subsequently exchanged Fe-Mg and O isotopes in situ in the presence of aqueous solutions (i.e., fluid-assisted thermal metamorphism).  相似文献   

16.
Concentrations of the REE, Sc, Co, Fe, Zn, Ir, Na and Cr were determined by instrumental neutron activation and mass spectrometric isotope dilution analysis for mineral separates of the coarseand fine-grained types (group I and II of Martin and Mason's classification) of the Allende inclusions.These data, combined with data on mineral/liquid partition coefficients, oxygen isotope distributions and diffusion calculations, suggest the following: (1) Minerals in the coarse-grained inclusions (group I) crystallized in a closed system with respect to refractory elements. On the other hand, differences in oxygen isotope distributions among minerals preclude a totally molten stage in the history of the inclusion. Group I inclusions were formed by rapid condensation (either to liquid or solid) in a supercooled solar nebula; extrasolar pyroxene and spinel dust were included but not melted in the condensing inclusions, thus preserving their extrasolar oxygen isotope composition. REE were distributed by diffusion during the subsequent heating at subsolidus temperatures; because oxygen diffuses much more slowly at these temperatures, the oxygen isotope anomalies were preserved. (2) The fine-grained (group II) inclusions were also formed by condensation from a super-cooled nebular gas; however, REE-rich clinopyroxene and spinel were formed early and REE-poor sodalite and nepheline were formed later and mechanically mixed with clinopyroxene and spinel to form the inclusions. The REE patterns of the bulk inclusions and the mineral separates are fractionated, indicating that REE abundances in the gaseous phase were already fractionated at the time of condensation of the minerals. (3) Pre-existing Mg isotope anomalies in the coarse-grained inclusions must have been erased during the heating stage thus resetting the 26Al-26Mg chronometer.  相似文献   

17.
The oxygen isotopic distribution in an amoeboid olivine aggregate (AOA), TTA1-02, from the Allende CV3 chondrite has been determined by secondary ion mass spectrometry. The irregular shaped TTA1- 02 (5×3mm) consists mostly of olivine grains of ca. 5μm in diameter. Olivine grains of Mg-rich (Fo95) and Fe-rich (Fo60) composition are in direct contact with each other, with a sharp compositional boundary. Oxygen isotopic compositions of Fe-rich olivine grains are 16O-poor (Δ17O ≅ −5‰), whereas Mg-rich olivine is 16O-rich (Δ17O ≅ −25‰). Several Al-rich inclusions (<ca. 500 μm in diameter) are enclosed by olivine grains in the AOA. Oxygen isotopic compositions of spinel and fassaite in Al-rich inclusions are 16O-rich (Δ17O ≅ −20‰), whereas those of anorthite, nepheline and phyllosilicate are 16O-poor (Δ17O ≅ −5‰). We propose the following sequence of events during the formation of AOAs in the Allende meteorite: 1) Formation of Al-rich inclusions with 16O-rich oxygen isotopic composition; 2) Accretion of Mg-rich olivine grains with 16O-rich oxygen isotopic composition around Al-rich inclusions; 3) Accretion into parent body; and 4) Aqueous alteration in the parent body, which led to crystallization of 16O-poor minerals, Fe-rich olivine, anorthite, nepheline, and phyllosilicate. This is reflecting reactions among primary 16O-rich AOA minerals and aqueous fluid having 16O-poor oxygen isotopic composition. Fe-rich olivine grains precipitated from aqueous fluids, which partially dissolved pre-existing Mg-rich olivine grains. Sintering and Mg-Fe diffusion occurred during thermal metamorphism. Anorthite, nepheline and phyllosilicate in Al-rich inclusions replaced primary anorthite or melilite during the aqueous alteration stage.  相似文献   

18.
We report in situ ion microprobe analyses of oxygen isotopic compositions of olivine, low-Ca pyroxene, high-Ca pyroxene, anorthitic plagioclase, glassy mesostasis, and spinel in five aluminum-rich chondrules and nine ferromagnesian chondrules from the CR carbonaceous chondrites EET92042, GRA95229, and MAC87320. Ferromagnesian chondrules are isotopically homogeneous within ±2‰ in Δ17O; the interchondrule variations in Δ17O range from 0 to −5‰. Small oxygen isotopic heterogeneities found in two ferromagnesian chondrules are due to the presence of relict olivine grains. In contrast, two out of five aluminum-rich chondrules are isotopically heterogeneous with Δ17O values ranging from −6 to −15‰ and from −2 to −11‰, respectively. This isotopic heterogeneity is due to the presence of 16O-enriched spinel and anorthite (Δ17O = −10 to −15‰), which are relict phases of Ca,Al-rich inclusions (CAIs) incorporated into chondrule precursors and incompletely melted during chondrule formation. These observations and the high abundance of relict CAIs in the aluminum-rich chondrules suggest a close genetic relationship between these objects: aluminum-rich chondrules formed by melting of spinel-anorthite-pyroxene CAIs mixed with ferromagnesian precursors compositionally similar to magnesium-rich (Type I) chondrules. The aluminum-rich chondrules without relict CAIs have oxygen isotopic compositions (Δ17O = −2 to −8‰) similar to those of ferromagnesian chondrules. In contrast to the aluminum-rich chondrules from ordinary chondrites, those from CRs plot on a three-oxygen isotope diagram along the carbonaceous chondrite anhydrous mineral line and form a continuum with amoeboid olivine aggregates and CAIs from CRs. We conclude that oxygen isotope compositions of chondrules resulted from two processes: homogenization of isotopically heterogeneous materials during chondrule melting and oxygen isotopic exchange between chondrule melt and 16O-poor nebular gas.  相似文献   

19.
The forsterite-bearing Type B (FoB) CAI SJ101 consists of three major structural units: (1) light patches of sector-zoned, poikilitic Al-rich clinopyroxene (Cpx) with numerous inclusions of small spinel grains and aggregates and subordinate amounts of Mg-rich melilite (Mel) and anorthite (An) (Sp-Cpx lithology), (2) dark sinuous bands of Al-rich clinopyroxene with large (up to ∼300 × 60 μm) poikilitically enclosed euhedral forsterite (Fo) crystals (Fo-Cpx lithology), and (3) the external Cpx-Sp-An rim overlying the entire inclusion. The two major lithologies are always separated by a transition zone of clinopyroxene poikilitically enclosing both forsterite and spinel. The patches of the Sp-Cpx lithology exhibit significant textural and mineralogical variability that is size-dependent. Small patches typically consist of Cpx and spinel with minor remnants of melilite and/or its alteration products. Large patches contain Mel-An-rich cores with either equigranular-ophitic-subophitic or ‘lacy’ textures reminiscent of those in Types B or C CAIs, respectively. All silicates poikilitically enclose numerous spinel grains of identical habit. Both melilite and anorthite gradually disappear toward the boundary with the Fo-Cpx lithology. Neither the evaporation mantle of Al-rich melilite typical of other FoBs nor the Wark-Lovering rim is present. Secondary minerals include grossular, monticellite, magnetite, and a few grains of wollastonite, andradite, and nepheline.Being a rather typical FoB mineralogically and chemically, texturally SJ101 differs from other FoBs in displaying the nearly complete segregation of forsterite from spinel which occur only in the Fo-Cpx and Sp-Cpx lithologies, respectively. The complex, convoluted internal structure of SJ101 suggests that the coarse-grained Sp-An-Mel-Cpx cores and Fo-Cpx lithology represent the precursor materials of FoBs, proto-CAIs and Fo-rich accretionary rims. While the inferred chemistry and mineralogy of the Fo-rich rims are fairly typical, the high Åk content in SJ101 melilite (78.7-82.3 mol.%) implies that the SJ101 proto-CAIs represent a new type of CAIs that has not been sampled before. This type of CAIs might have formed by remelting of spinel-rich condensates.The Group II REE pattern, slightly negative δ29Si and δ25Mg values, and nearly solar ratios of the major elements in the bulk SJ101 suggest that its precursors, proto-CAIs and Fo-rich rims, could have formed by a non-equilibrium condensation in a closed system of solar composition somewhat depleted in a super-refractory evaporation residue. The proposed formation scenario of SJ101 invokes a non-steady cooling and condensation of the nebular gas interrupted by at least two distinct melting episodes required to account for the igneous textures of the Mel-An-Cpx-rich cores (proto-CAIs) and the Fo-Cpx lithology.  相似文献   

20.
Allende “fluffy” Type A's (FTA's) are a distinct sub-group of Ca-, Al-rich inclusions whose primary mineral assemblage consists of Al-rich melilite (Åk 0–33), spinel that is commonly very V-rich, perovskite and, frequently, hibonite. Some contain relatively coarse-grained melilite (up to 1.5 mm) that is intensely kink-banded and commonly reversely-zoned, hibonite and V-rich spinel. Others contain much finer-grained and strain-free melilite (?50 μm) and have not been found to contain hibonite or V-rich spinel. Some FTA's contain both coarser- and finer-grained melilite and textural relationships indicate that the latter is replacing the former. FTA's are characterized by extremely irregular shapes and 60–75 volume per cent of fine-grained, secondary alteration products. Many are aggregates of innumerable nodules, each of which is surrounded by a Wark-Lovering-type rim sequence. These nodules are frequently separated from one another by matrix-like clastic rim material. Other FTA's do not have nodular structure. Structural and mineralogical characteristics of their Wark-Lovering rims suggest that FTA's did not achieve their shapes by deformation of a liquid or a hot, plastic solid. In contrast to those in Type B inclusions, formation of reverse zoning in the coarser-grained melilite crystals in FTA's cannot be understood in terms of crystallization from a liquid but are readily explainable by condensation from a solar nebular gas during a period of falling pressure. Further evidence against a liquid origin is the wide range of spinel compositions within individual coarser-grained FTA's. The fact that the reversely-zoned melilite crystals cannot have been produced in any kind of sublimation or distillation process precludes formation of these inclusions as volatilization residues. FTA's are aggregates in some of which are preserved vapor-solid condensate grains that formed at high temperature in the solar nebula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号