首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A new 2013 version of the IAU MDC photographic meteor orbits database which is an upgrade of the current 2003 version (Lindblad et al. 2003, EMP 93:249–260) is presented. To the 2003 version additional 292 orbits are added, thus the new version of the database consists of 4,873 meteors with their geophysical and orbital parameters compiled in 41 catalogues. For storing the data, a new format enabling a more simple treatment with the parameters, including the errors of their determination is applied. The data can be downloaded from the IAU MDC web site: http://www.astro.sk/IAUMDC/Ph2013/  相似文献   

2.
The objective of the COST296 Action MIERS (Mitigation of Ionospheric Effects on Radio Systems) is to develop an increased knowledge of the effects imposed by the ionosphere on practical radio systems, and for the development and implementation of techniques to mitigate the deleterious effects of the ionosphere on such systems (http://www.cost296.rl.ac.uk). The COST296 Community contributes to the international efforts of IHY with scientific and outreach activities as well. After the realization of a web site hosted by Istituto Nazionale di Geofisica e Vulcanologia (INGV), developed also to promote the ionospheric physics to the open public, the COST296 Community supported an initiative addressed to the pupils of the primary school of several European Countries: the realization of a school-calendar dedicated to the Sun and to the Sun-Earth connections.  相似文献   

3.
4.
The He, C, N, and O abundances in more than 120 planetary nebulae (PNe) of our Galaxy and the Magellanic Clouds have been redetermined by analyzing new PNe observations. The characteristics of PNe obtained by modeling their spectra have been used to compile a new catalog of parameters for Galactic and extragalactic PNe, which is accessible at http://www.astro.spbu.ru/staff/afk/GalChemEvol.html. The errors in the parameters of PNe and their elemental abundances related to inaccuracies in the observational data have been analyzed. The He abundance is determined with an accuracy of 0.06 dex, while the errors in the C, N, and O abundances are 0.1–0.2 dex. Taking into account the inaccuracies in the corrections for the ionization stages of the elements whose lines are absent in the PNe spectra increases the errors in the He abundance to 0.1 dex and in the C, N, and O abundances to 0.2–0.3 dex. The elemental abundances in PNe of various Galactic subsystems and the Magellanic Clouds have been analyzed. This analysis suggests that the Galactic bulge objects are similar to type II PNe in Peimbert’s classification, whose progenitor stars belong to the thin-disk population with ages of at least 4–6 Gyr. A similarity between the elemental abundances in PNe of the Magellanic Clouds and the Galactic halo has been established.  相似文献   

5.
Influence of upper air conditions on the Patagonia icefields   总被引:1,自引:1,他引:0  
Upper-air conditions archived in the NCEP-NCAR Reanalysis have been used to investigate changes in precipitation and snowfall over the Patagonia icefields during 1960–99. Apparently, whereas total precipitation has not changed, warming has caused a decrease in the amount falling as snow. Precipitation at a site is taken to be proportional to the product of the relative humidity and the component of the wind in a particular critical direction, both at 850 hPa ( 1400 m) at a point over the ocean to the west of the icefields; whether it falls as rain or snow is assumed to depend on whether the temperature at the elevation of the site is above or below + 2 °C. The critical direction is assumed to be 270°, which is perpendicular to the north–south trending Andes and is also the prevailing wind direction in this zone of strong westerlies. Because of the scarcity of precipitation records on or near the icefields, the constant of proportionality cannot be determined, so the investigation is limited to examining relative changes in those upper air variables. Warming at 850 hPa has been 0.5 °C over the 40 years, both winter and summer, with the effects that it has: (1) shifted from snow to rain 5% of the precipitation, the total of which has changed little, and (2) increased annual melt in the ablation areas by 0.5 m w.e. The icefields have been losing mass since at least 1870, so this 40-year trend represents only an acceleration of the longer-term trend of adjusting to climate change since the Little Ice Age.  相似文献   

6.
Saturn's moon Titan has been considered as one of the few places in our Solar System, where atmospheric and surface conditions could have produced organic compounds essential as precursors for an evolution of life. The Cassini-Huygens mission has provided new data on Titan's atmosphere and surface, which enabled us to simulate the chemical processes occurring under these conditions. Possible lightning events on Titan cannot only produce higher hydrocarbons, but also allow surface water ice to participate in the reaction scenario, resulting in CHO, CHN, and CHON compounds including several molecules relevant for the formation of amino acids and nucleic acids.  相似文献   

7.
The available evidence regarding the disposition and chronology of Pliocene–Pleistocene fluvial terraces, coastal rock flats, raised beaches and lacustrine sediments adjoining the Anti-Atlas coastline of Morocco has been reviewed and supplemented by additional information from our own field reconnaissance. It is thus suggested that the study region has experienced uplift by  130 m since the Mid-Pliocene climatic optimum ( 3.1 Ma), by  90 m since the latest Pliocene ( 2 Ma), and by  45 m since the Mid-Pleistocene Revolution ( 0.9 Ma). Each of these phases of uplift correlates with a phase of global climate change known independently, and it is thus inferred that the observed uplift is being driven by climate through mechanisms such as erosional isostasy and the associated induced lower-crustal flow. Numerical modelling of the observed uplift history indicates that the mobile lower-crustal layer in the study region is  9 km thick, with a temperature at its base of  500 °C. The base of this mobile layer is inferred to be at  24 km depth, the deepest crust consisting of a layer of mafic underplating that does not flow under ambient conditions. The principal landform in the study region, the coastal rock platform at  60 m a.s.l., thus formed during a succession of interglacial marine highstands in the late Early Pleistocene when uplift rates were low. Although control on the ages of young sediments and landforms is currently extremely limited, being dependent on regional correlation schemes rather than on absolute dating, the study region fits the pattern, emerging worldwide, that climate change is driving the systematic growth of topographic relief evident during the Late Cenozoic.  相似文献   

8.
Unspiked K–Ar dating makes the age of the Çakmaközü basalt in eastern Turkey 1818 ± 39 ka (± 2σ). This basalt overlies a staircase of four terraces of the River Murat, a Euphrates tributary, each separated vertically by  20 m. We deduce from the relationship with the basalt that these fluvial deposits aggraded during successive  40 ka climate cycles around the Pliocene–Pleistocene boundary (probably MIS 72-66). The incision and rock uplift at  0.5 mm a− 1, thus indicated, are roughly consistent with the  500 m of entrenchment of this  1.8 Ma Murat palaeo-valley into a former lake basin since the Mid-Pliocene climatic optimum. We infer that the  130 m of incision in this locality since  1.8 Ma dramatically underestimates the associated rock uplift, estimated as  600 m. The  1100 m of rock uplift and  800 m of surface uplift thus estimated since the Mid-Pliocene indicate (assuming Airy isostatic equilibrium)  5 km of thickening of the continental crust, from  37 km to the present 42 km. Eastern Anatolia was thus at a much lower altitude in the Mid-Pliocene than at present, consistent with the low-relief lacustrine palaeo-environment. We infer that the subsequent development of topography and excess crustal thickness are being caused by coupling between surface processes and induced flow in the lower crust: climate change following the Mid-Pliocene climatic optimum resulted in faster erosion that has drawn mobile lower crust beneath the study region.  相似文献   

9.
The Mars climate database (MCD) is a database of statistics based on output from physically consistent numerical model simulations which describe the climate and surface environment of Mars. It is used here to predict the meteorological environment of the Beagle 2 lander site. The database was constructed directly on the basis of output from multiannual integrations of two general circulation models, developed jointly at Laboratoire de Météorologie Dynamique du Centre National de la Recherche Scientifique, France, and the University of Oxford, UK. In an atmosphere with dust opacities similar to that observed by Mars Global Surveyor, the predicted surface temperature at the time of landing (Ls=322°, 13:00 local time), is , and varying between ∼186 and over the Martian day. The predicted air temperature at above the surface, the height of the fully extended Beagle 2 robot arm, is at the time of landing. The expected mean wind near the surface on landing is north-westerly in direction, becoming more southerly over the mission. An increase in mean surface pressure is expected during the mission. Heavy global dust storm predictions are discussed; conditions which may only occur in the extreme as the expected time of landing is around the end of the main dust storm period. Past observations show approximately a one in five chance of a large-scale dust storm in a whole Mars year over the landing region, Isidis Planitia. This statistic results from observations of global, encircling, regional and local dust storms but does not include any small-scale dust “events” such as dust devils.  相似文献   

10.
11.
We present CCD photometric observations of 23 main-belt asteroids, of which 8 have never been observed before; thus, the data of these objects are the first in the literature. The majority showed well-detectable light variations, exceeding 0m1. We have determined synodic periods for 756 Lilliana (936), 1270 Datura (34), 1400 Tirela (1336), 1503 Kuopio (998), 3682 Welther (359), 7505 Furushu (414) and 11436 1969 QR (123), while uncertain period estimates were possible for 469 Argentina (123), 546 Herodias (104) and 1026 Ingrid (53). The shape of the lightcurves of 3682 Welther changed on a short time-scale and showed dimmings that might be attributed to eclipses in a binary system. For the remaining objects, only lower limits of the periods and amplitudes were concluded.  相似文献   

12.
Solar light gets scattered at cloud top level in Venus’ atmosphere, in the visible range, which corresponds to the altitude of 67 km. We present Doppler velocity measurements performed with the high resolution spectrometer MTR of the Solar telescope THEMIS (Teide Observatory, Canary Island) on the sodium D2 solar line . Observations lasted only 49 min because of cloudy weather. However, we could assess the instrumental velocity sensitivity, per pixel of 1 arcsec, and give a value of the amplitude of zonal wind at equator at .  相似文献   

13.
Conventional meteoroid theory assumes that the dominant mode of ablation (which we will refer to as thermal ablation) is by evaporation following intense heating during atmospheric flight. Light production results from excitation of ablated meteoroid atoms following collisions with atmospheric constituents. In this paper, we consider the question of whether sputtering may provide an alternative disintegration process of some importance. For meteoroids in the mass range from 10-3 to and covering a meteor velocity range from 11 to , we numerically modeled both thermal ablation and sputtering ablation during atmospheric flight. We considered three meteoroid models believed to be representative of asteroidal ( mass density), cometary () and porous cometary () meteoroid structures. Atmospheric profiles which considered the molecular compositions at different heights were use in the sputtering calculations. We find that while in many cases (particularly at low velocities and for relatively large meteoroid masses) sputtering contributes only a small amount of mass loss during atmospheric flight, in some cases sputtering is very important. For example, a porous meteoroid at will lose nearly 51% of its mass by sputtering, while a asteroidal meteoroid at will lose nearly 83% of its mass by sputtering. We argue that sputtering may explain the light production observed at very great heights in some Leonid meteors. We discuss methods to observationally test the predictions of these computations. A search for early gradual tails on meteor light curves prior to the commencement of intense thermal ablation possibly represents the most promising approach. The impact of this work will be most dramatic for very small meteoroids such as those observed with large aperture radars. The heights of ablation and decelerations observed using these systems may provide evidence for the importance of sputtering.  相似文献   

14.
15.
16.
Recent numerical simulations of MHD turbulence, under very different driving conditions, and by several different investigators, all indicate a sensitivity of the rms fluctuations to the ratio of the microscopic viscosity to resistivity. This dimensionless quantity is known as the magnetic Prandtl number Pm. In general, standard astrophysical accretion disks are characterized by Pm  1 throughout their radial extent, while low luminosity accretors (e.g. Sag A*) have Pm  1. Here, we show that standard α models of black hole accretion disks have a transition radius, measured in tens of Schwarzschild radii, at which the flow goes from Pm  1 to Pm  1. Moreover, this transition may well be dynamically unstable, leading to a sort of two-phase “Prandtl number medium” We advance the idea that this is the physical reason underlying the change in the accretion properties of the inner regions of Keplerian disks, leading to a truncation of the cool disk (Pm  1) and the onset of hot, low density gas flow (Pm  1).  相似文献   

17.
A set of 13 new unspiked K–Ar dates has been obtained for the Quaternary basaltic volcanism in the Kula area of western Turkey, providing improved age control for the fluvial deposits of the Gediz River that underlie these basalt flows. This dating is able, for the first time, to resolve different ages for the oldest basalts, assigned to category β2, that cap the earliest Gediz deposits recognised in this area, at altitudes of 140 to 210 m above present river level. In particular, the β2 basalt capping the Sarnıç Plateau is dated to 1215 ± 16 ka (± 2σ), suggesting that the youngest underlying fluvial deposits, 185 m above present river level, are no younger than marine oxygen isotope stage (MIS) 38. In contrast, the β2 basalt capping the adjacent Burgaz Plateau is dated to 1014 ± 23 ka, suggesting that the youngest underlying fluvial deposits, 140 m above present river level, date from MIS 28. The staircase of 11 high Gediz terraces capping the latter plateau is thus dated to MIS 48-28, assuming they represent consecutive 40 ka Milankovitch cycles, although it is possible that as many as two cycles are missing from this sequence such that the highest terrace is correspondingly older. Basalt flows assigned to the β3 category, capping Gediz terraces 35 and 25 m above the present river level, have been dated to 236 ± 6 ka and 180 ± 5 ka, indicating incision rates of 0.15 mm a− 1, similar to the time-averaged rates since the eruptions of the β2 basalts. The youngest basalts, assigned to category β4, are Late Holocene; our K–Ar results for them range from zero age to a maximum of 7 ± 2 ka.This fluvial incision is interpreted using numerical modelling as a consequence of uplift caused by a regional-scale increase in spatial average erosion rates to 0.1 mm a− 1, starting at 3100 ka, caused by climate deterioration, since when a total of 410 m of uplift has occurred. Parameters deduced on this basis from the observed disposition of the Early Pleistocene Gediz terraces include the local effective viscosity of the lower crust, which is 2 × 1018 Pa s, the Moho temperature of 660 °C, and the depth of the base of the brittle upper crust, which is 13 km. The thin lithosphere in this area results in high heat flow, causing this relatively shallow base of the brittle upper crust and the associated relatively thick lower-crustal layer, situated between depths of 13 and 30 km. It estimated that around 900 ka, at the start of the 100 ka Milankovitch forcing, the spatial average erosion rate increased slightly, to 0.12 mm a− 1; the associated relatively sluggish variations in uplift rates are as expected given the relatively thick lower-crustal layer.This modelling indicates that the growth of topography since the Pliocene in this study region has not involved a steady state. The landscape was significantly perturbed by the Middle Pliocene increase in erosion rates, and has subsequently adjusted towards—but not reached—a new steady state consistent with these increased erosion rates. It would not be possible to constrain what has been occurring from the Middle to Late Pleistocene or even the Early Pleistocene uplift response alone; information regarding the starting conditions is also essential, this being available in this region from the older geological record of stacked fluvial and lacustrine deposition. This result has major implications for the rigorous modelling of uplift histories in regions of rapid erosion, where preservation of information to constrain the starting conditions is unlikely.  相似文献   

18.
19.
In 2007, a companion with planetary mass was found around the pulsating subdwarf B star V391 Pegasi with the timing method, indicating that a previously undiscovered population of substellar companions to apparently single subdwarf B stars might exist. Following this serendipitous discovery, the EXOTIME (http://www.na.astro.it/~silvotti/exotime/) monitoring program has been set up to follow the pulsations of a number of selected rapidly pulsating subdwarf B stars on time scales of several years with two immediate observational goals:
  1. determine $\dot{P}$ of the pulsational periods P
  2. search for signatures of substellar companions in O–C residuals due to periodic light travel time variations, which would be tracking the central star’s companion-induced wobble around the centre of mass
These sets of data should therefore, at the same time, on the one hand be useful to provide extra constraints for classical asteroseismological exercises from the $\dot{P}$ (comparison with “local” evolutionary models), and on the other hand allow one to investigate the preceding evolution of a target in terms of possible “binary” evolution by extending the otherwise unsuccessful search for companions to potentially very low masses. While timing pulsations may be an observationally expensive method to search for companions, it samples a different range of orbital parameters, inaccessible through orbital photometric effects or the radial velocity method: the latter favours massive close-in companions, whereas the timing method becomes increasingly more sensitive toward wider separations. In this paper we report on the status of the on-going observations and coherence analysis for two of the currently five targets, revealing very well-behaved pulsational characteristics in HS?0444+0458, while showing HS?0702+6043 to be more complex than previously thought.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号