首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to general seismic zoning maps, Moscow is in an area with a seismic intensity of 5, in which the maximum seismic effect is expected from remote deep-focal earthquakes in the Vrancea zone (Eastern Carpathians, Romania). In our previous studies, an earthquake with a hypocenter at a depth of 80–150 km in the Vrancea zone, a moment magnitude of Mw = 8.0, and a drop in stress of Δσ = 325 bar was used as a scenario earthquake for Moscow. A series of model acceleration time histories for ground vibrations was calculated for this earthquake for the reference local conditions of the Moskva seismic station (Moscow, Pyzhevskii per. 3). In this paper, these acceleration time histories are used to calculate the acceleration time histories and estimate the ground vibration parameters for an scenario earthquake at other sites on the territory of Moscow for which information on soil conditions is available. Since the epicentral distance is large (~1300 km), it can be assumed that changes in the shape and spectral content of the acceleration time histories at different sites in Moscow are only caused by different local conditions.  相似文献   

2.
Modelling seismic attenuation is one of the most critical points in the hazard assessment process. In this article we consider the spatial distribution of the effects caused by an earthquake as expressed by the values of the macroseismic intensity recorded at various locations surrounding the epicentre. Considering the ordinal nature of the intensity, a way to show its decay with distance is to draw curves—isoseismal lines—on maps, which bound points of intensity not smaller than a fixed value. These lines usually take the form of closed and nested curves around the epicentre, with highly different shapes because of the effects of ground conditions and of complexities in rupture propagation. Forecasting seismic attenuation of future earthquakes requires stochastic modelling of the decay on the basis of a common spatial pattern. The aim of this study is to consider a statistical methodology that identifies a general shape, if it exists, for isoseismal lines of a set of macroseismic fields. Data depth is a general nonparametric method for analysis of probability distributions and datasets. It has arisen as a statistical method to order points of a multivariate space, e.g., Euclidean space \({\mathbb {R}}^{p}\), \(p \ge 1\), according to the centrality with respect to a distribution or a given data cloud. Recently, this method has been extended to the ordering of functions and trajectories. In our case, for a fixed intensity decay \(\varDelta I\), we build a set of convex hulls that enclose the sites of felt intensity \(I_s \ge I_0 -\varDelta I\), one for each macroseismic field of a set of earthquakes that are considered as similar from the attenuation point of view. By applying data depth functions to this functional dataset, it is possible to identify the most central curve, i.e., the attenuation pattern, and to consider other properties like variability, outlyingness, and possible clustering of such curves. Results are shown for earthquakes that occurred on the Central Po Plain in May 2012, and on the eastern flank of Mt. Etna since 1865.  相似文献   

3.
We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes (USLE), which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10N(M, L)?=?A?+?B·(5 – M)?+?C·log10L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within a seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g., peak ground acceleration, PGA, or macro-seismic intensity). After a rigorous verification against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory). The methodology of seismic hazard and risk assessment is illustrated by application to the territory of Greater Caucasus and Crimea.  相似文献   

4.
Seismic intensity, measured through the Mercalli–Cancani–Sieberg (MCS) scale, provides an assessment of ground shaking level deduced from building damages, any natural environment changes and from any observed effects or feelings. Generally, moving away from the earthquake epicentre, the effects are lower but intensities may vary in space, as there could be areas that amplify or reduce the shaking depending on the earthquake source geometry, geological features and local factors. Currently, the Istituto Nazionale di Geofisica e Vulcanologia analyzes, for each seismic event, intensity data collected through the online macroseismic questionnaire available at the web-page www.haisentitoilterremoto.it. Questionnaire responses are aggregated at the municipality level and analyzed to obtain an intensity defined on an ordinal categorical scale. The main aim of this work is to model macroseismic attenuation and obtain an intensity prediction equation which describes the decay of macroseismic intensity as a function of the magnitude and distance from the hypocentre. To do this we employ an ordered probit model, assuming that the intensity response variable is related through the link probit function to some predictors. Differently from what it is commonly done in the macroseismic literature, this approach takes properly into account the qualitative and ordinal nature of the macroseismic intensity as defined on the MCS scale. Using Markov chain Monte Carlo methods, we estimate the posterior probability of the intensity at each site. Moreover, by comparing observed and estimated intensities we are able to detect anomalous areas in terms of residuals. This kind of information can be useful for a better assessment of seismic risk and for promoting effective policies to reduce major damages.  相似文献   

5.
Recent results in extreme value theory suggest a new technique for statistical estimation of distribution tails (Embrechts et al., 1997), based on a limit theorem known as the Gnedenko-Pickands-Balkema-de Haan theorem. This theorem gives a natural limit law for peak-over-threshold values in the form of the Generalized Pareto Distribution (GPD), which is a family of distributions with two parameters. The GPD has been successfully applied in a number of statistical problems related to finance, insurance, hydrology, and other domains. Here, we apply the GPD approach to the well-known seismological problem of earthquake energy distribution described by the Gutenberg-Richter seismic moment-frequency law. We analyze shallow earthquakes (depth h<70 km) in the Harvard catalog over the period 1977–2000 in 12 seismic zones. The GPD is found to approximate the tails of the seismic moment distributions quite well over the lower threshold approximately M 1024 dyne-cm, or somewhat above (i.e., moment-magnitudes larger than m W =5.3). We confirm that the b-value is very different (b=2.06 ± 0.30) in mid-ocean ridges compared to other zones (b=1.00 ± 0.04) with a very high statistical confidence and propose a physical mechanism contrasting crack-type rupture with dislocation-type behavior. The GPD can as well be applied in many problems of seismic hazard assessment on a regional scale. However, in certain cases, deviations from the GPD at the very end of the tail may occur, in particular for large samples signaling a novel regime.  相似文献   

6.
The seismic fragility of a system is the probability that the system enters a damage state under seismic ground motions with specified characteristics. Plots of the seismic fragilities with respect to scalar ground motion intensity measures are called fragility curves. Recent studies show that fragility curves may not be satisfactory measures for structural seismic performance, since scalar intensity measures cannot comprehensively characterize site seismicity. The limitations of traditional seismic intensity measures, e.g., peak ground acceleration or pseudo-spectral acceleration, are shown and discussed in detail. A bivariate vector with coordinates moment magnitude m and source-to-site distance r is proposed as an alternative seismic intensity measure. Implicitly, fragility surfaces in the (mr)-space could be used as graphical representations of seismic fragility. Unlike fragility curves, which are functions of scalar intensity measures, fragility surfaces are characterized by two earthquake-hazard parameters, (mr). The calculation of fragility surfaces may be computationally expensive for complex systems. Thus, as solutions to this issue, a bi-variate log-normal parametric model and an efficient calculation method, based on stochastic-reduced-order models, for fragility surfaces are proposed.  相似文献   

7.
This paper investigates the suitability of a three-parameter (scale, shape, and location) Weibull distribution in probabilistic assessment of earthquake hazards. The performance is also compared with two other popular models from same Weibull family, namely the two-parameter Weibull model and the inverse Weibull model. A complete and homogeneous earthquake catalog (Yadav et al. in Pure Appl Geophys 167:1331–1342, 2010) of 20 events (M ≥ 7.0), spanning the period 1846 to 1995 from north–east India and its surrounding region (20°–32°N and 87°–100°E), is used to perform this study. The model parameters are initially estimated from graphical plots and later confirmed from statistical estimations such as maximum likelihood estimation (MLE) and method of moments (MoM). The asymptotic variance–covariance matrix for the MLE estimated parameters is further calculated on the basis of the Fisher information matrix (FIM). The model suitability is appraised using different statistical goodness-of-fit tests. For the study area, the estimated conditional probability for an earthquake within a decade comes out to be very high (≥0.90) for an elapsed time of 18 years (i.e., 2013). The study also reveals that the use of location parameter provides more flexibility to the three-parameter Weibull model in comparison to the two-parameter Weibull model. Therefore, it is suggested that three-parameter Weibull model has high importance in empirical modeling of earthquake recurrence and seismic hazard assessment.  相似文献   

8.
Earthquake early warning systems (EEWS) are considered to be an effective, pragmatic, and viable tool for seismic risk reduction in cities. While standard EEWS approaches focus on the real-time estimation of an earthquake’s location and magnitude, innovative developments in EEWS include the capacity for the rapid assessment of damage. Clearly, for all public authorities that are engaged in coordinating emergency activities during and soon after earthquakes, real-time information about the potential damage distribution within a city is invaluable. In this work, we present a first attempt to design an early warning and rapid response procedure for real-time risk assessment. In particular, the procedure uses typical real-time information (i.e., P-wave arrival times and early waveforms) derived from a regional seismic network for locating and evaluating the size of an earthquake, information which in turn is exploited for extracting a risk map representing the potential distribution of damage from a dataset of predicted scenarios compiled for the target city. A feasibility study of the procedure is presented for the city of Bishkek, the capital of Kyrgyzstan, which is surrounded by the Kyrgyz seismic network by mimicking the ground motion associated with two historical events that occurred close to Bishkek, namely the 1911 Kemin (M?=?8.2; ±0.2) and the 1885 Belovodsk (M?=?6.9; ±0.5) earthquakes. Various methodologies from previous studies were considered when planning the implementation of the early warning and rapid response procedure for real-time risk assessment: the Satriano et al. (Bull Seismol Soc Am 98(3):1482–1494, 2008) approach to real-time earthquake location; the Caprio et al. (Geophys Res Lett 38:L02301, 2011) approach for estimating moment magnitude in real time; the EXSIM method for ground motion simulation (Motazedian and Atkinson, Bull Seismol Soc Am 95:995–1010, 2005); the Sokolov (Earthquake Spectra 161: 679–694, 2002) approach for estimating intensity from Fourier amplitude spectra; and the Tyagunov et al. (Nat Hazard Earth Syst Sci 6:573–586, 2006) approach for risk computation. Innovatively, all these methods are jointly applied to assess in real time the seismic risk of a particular target site, namely the city of Bishkek. Finally, the site amplification and vulnerability datasets considered in the proposed methodology are taken from previous studies, i.e., Parolai et al. (Bull Seismol Soc Am, 2010) and Bindi et al. (Soil Dyn Earthq Eng, 2011), respectively.  相似文献   

9.
A recently compiled, comprehensive, and good-quality strong-motion database of the Iranian earthquakes has been used to develop local empirical equations for the prediction of peak ground acceleration (PGA) and 5%-damped pseudo-spectral accelerations (PSA) up to 4.0 s. The equations account for style of faulting and four site classes and use the horizontal distance from the surface projection of the rupture plane as a distance measure. The model predicts the geometric mean of horizontal components and the vertical-to-horizontal ratio. A total of 1551 free-field acceleration time histories recorded at distances of up to 200 km from 200 shallow earthquakes (depth < 30 km) with moment magnitudes ranging from Mw 4.0 to 7.3 are used to perform regression analysis using the random effects algorithm of Abrahamson and Youngs (Bull Seism Soc Am 82:505–510, 1992), which considers between-events as well as within-events errors. Due to the limited data used in the development of previous Iranian ground motion prediction equations (GMPEs) and strong trade-offs between different terms of GMPEs, it is likely that the previously determined models might have less precision on their coefficients in comparison to the current study. The richer database of the current study allows improving on prior works by considering additional variables that could not previously be adequately constrained. Here, a functional form used by Boore and Atkinson (Earthquake Spect 24:99–138, 2008) and Bindi et al. (Bull Seism Soc Am 9:1899–1920, 2011) has been adopted that allows accounting for the saturation of ground motions at close distances. A regression has been also performed for the V/H in order to retrieve vertical components by scaling horizontal spectra. In order to take into account epistemic uncertainty, the new model can be used along with other appropriate GMPEs through a logic tree framework for seismic hazard assessment in Iran and Middle East region.  相似文献   

10.
The so called “valley effect” relates to the typical seismic response of basin shaped bedrock filled by quaternary sediments. It is an aspect of the renown “local seismic effect” that shall be taken into account when dealing with microzoning studies. Several experimental surveys and numerical simulations performed worldwide over the last 40 years, confirmed that valley responses under seismic excitations show common features in various geological contexts as far as the sedimentary valleys (e.g. alluvial and lacustrine plains), the intermountain valleys (e.g. alpine valleys) and graben shaped basins. Such features mainly depend on the basin geometry, referred to as the shape ratio SR, and the sediment and basin impedance contrast IC. Although researchers agree on the prominent role of local seismic effects for interpreting erratic damages caused by seismic shaking in urbanized areas, no fully shared strategies have been identified for taking into account valley effect within microzoning studies. In this paper, a numerical simulations on three models of trapezoidal shaped basins have been performed. These valley models relate to sediments and basins detected within the Tuscany Region territory during the VEL project. Results, in terms of the amplification index $\text{ F }_{\mathrm{A}}$ F A have been provided. Three “valley effect charts” for various SR and IC values have been propose for taking into account the local seismic effects due to the basin amplifications within microzoning maps.  相似文献   

11.
—A new methodology for probabilistic seismic hazard analysis is described. The approach combines the best features of the "deductive" (Cornell, 1968) and "historic" (Veneziano et al., 1984) procedures. It can be called a "parametric-historic" procedure. The maximum regional magnitude mmax is of paramount importance in this approach and Part I of the authors’ work (Kijko and Graham, 1998) was dedicated to developing efficient statistical procedures that can be used for the evaluation of this parameter. In Part II the approach of a probabilistic seismic hazard assessment at a given site is described. The approach permits the utilization of incomplete earthquake catalogues. It is assumed that a typical catalogue contains two types of information historical macroseismic events that occurred over a period of a few hundred years and recent, instrumental data. The historical part of the catalogue contains only the strongest events, whereas the complete part can be divided into several subcatalogues, each assumed complete above a specified threshold of magnitude. The author’s approach also takes into account uncertainty in the determination of the earthquake magnitude. The technique has been developed specifically for the estimation of seismic hazard at individual sites, without the subjective judgment involved in the definition of seismic source zones, in which specific active faults have not been mapped and identified, and where the causes of seismicity are not well understood. As an example of the application of the new technique, the results of a typical hazard analysis for a hypothetical engineering structure located in the territory of South Africa are presented. It was assumed that the only reliable information in the assessment of the seismic hazard parameters in the vicinity of the selected site comes from a knowledge of past seismicity. The procedure was applied to seismic data that were divided into an incomplete part, containing only the largest events, and two complete parts, containing information obtained from instruments. The simulation experiments described in Part I of our study have shown that the Bayesian estimator K-S-B tends to perform very well, especially in the presence of inevitable deviations from the simple Gutenberg–Richter model. In the light of this fact value &gif1; = 6.66 - 0.44, which was obtained from the K-S-B technique, was regarded as the best choice. At an exceedance probability of 10х per annum, the median value of peak ground acceleration on rock at the site is 0.31g, and at an exceedance probability of 10ц per annum, the median peak ground acceleration at the site is 0.39g. The median value of the maximum possible acceleration at the site is 0.40g, which was calculated from attenuation formulae by assuming the occurrence of the strongest possible earthquake, e.g., with magnitude &gif1; = 6.66 at distance 10 km.  相似文献   

12.
Due to the randomness of earthquake wave magnitude and direction, and the uncertain direction of strong axis and weak axis in the construction of engineering structures, the effect of the direction of ground motion on a structure are studied herein. Ground motion records usually contain three vertical ground motion data, which are obtained by sensors arranged in accordance with the EW(East-West) direction, NS(South- North) direction and perpendicular to the surface(z) direction, referring to the construction standard of seismic stations. The seismic records in the EW and NS directions are converted to Cartesian coordinates in accordance with the rotation of θ = 0°-180°, and consequently, a countless group of new ground motion time histories are obtained. Then, the characteristics of the ground motion time history and response spectrum of each group were studied, resulting in the following observations:(1) the peak and phase of ground motion are changed with the rotation of direction θ, so that the direction θ of the maximum peak ground motion can be determined;(2) response spectrum values of each group of ground motions change along with the direction θ, and their peak, predominant period and declining curve are also different as the changes occur; then, the angle θ in the direction of the maximum peak value or the widest predominant period can be determined; and(3) the seismic response of structures with different directions of ground motion inputs has been analyzed under the same earthquake record, and the results show the difference. For some ground motion records, such as the Taft seismic wave, these differences are significant. Next, the Lushan middle school gymnasium structure was analyzed and the calculation was checked using the proposed method, where the internal force of the upper space truss varied from 25% to 28%. The research results presented herein can be used for reference in choosing the ground motion when checking the actual damage to structures following earthquakes and explaining the seismic damage. Meanwhile, it also provides a reference value for research into the most severe ground motion.  相似文献   

13.
Current computational resources and physical knowledge of the seismic wave generation and propagation processes allow for reliable numerical and analytical models of waveform generation and propagation. From the simulation of ground motion, it is easy to extract the desired earthquake hazard parameters. Accordingly, a scenario-based approach to seismic hazard assessment has been developed, namely the neo-deterministic seismic hazard assessment (NDSHA), which allows for a wide range of possible seismic sources to be used in the definition of reliable scenarios by means of realistic waveforms modelling. Such reliable and comprehensive characterization of expected earthquake ground motion is essential to improve building codes, particularly for the protection of critical infrastructures and for land use planning. Parvez et al. (Geophys J Int 155:489–508, 2003) published the first ever neo-deterministic seismic hazard map of India by computing synthetic seismograms with input data set consisting of structural models, seismogenic zones, focal mechanisms and earthquake catalogues. As described in Panza et al. (Adv Geophys 53:93–165, 2012), the NDSHA methodology evolved with respect to the original formulation used by Parvez et al. (Geophys J Int 155:489–508, 2003): the computer codes were improved to better fit the need of producing realistic ground shaking maps and ground shaking scenarios, at different scale levels, exploiting the most significant pertinent progresses in data acquisition and modelling. Accordingly, the present study supplies a revised NDSHA map for India. The seismic hazard, expressed in terms of maximum displacement (Dmax), maximum velocity (Vmax) and design ground acceleration (DGA), has been extracted from the synthetic signals and mapped on a regular grid over the studied territory.  相似文献   

14.
An attempt has been made to study the behavior of nailed vertical excavations in medium dense to dense cohesionless soil under seismic conditions using a pseudo-dynamic approach. The effect of several parameters such as angle of internal friction of soil(Φ), horizontal(k_h) and vertical(k_v) earthquake acceleration coefficients, amplification factor(f_a), length of nails(L), angle of nail inclination(α) and vertical spacing of nails(S_v) on the stability of nailed vertical excavations has been explored. The limit equilibrium method along with a planar failure surface is used to derive the formulation involved with the pseudo-dynamic approach, considering axial pullout of the installed nails. A comparison of the pseudo-static and pseudo-dynamic approaches has been established in order to explore the effectiveness of the pseudo-dynamic approach over pseudo-static analysis, since most of the seismic stability studies on nailed vertical excavations are based on the latter. The results are expressed in terms of the global factor of safety(FOS). Seismic stability, i.e., the FOS of nailed vertical excavations is found to decrease with increase in the horizontal and vertical earthquake forces. The present values of FOS are compared with those available in the literature.  相似文献   

15.
Seismic site amplification studies are generally used to assess the effects of local geology and soil conditions on ground motion characteristics. Although extensive reviews on site amplification phenomena associated with stratigraphic effects can be found in the specialized literature, it should be pointed out that most of the practical applications have been limited to the study of vertically propagating shear horizontal (SH) waves, i.e., to the 1-D soil amplification problem. Furthermore, little attention, if any, has been devoted to the study of the effects of non-vertically incident SH waves on surface accelerograms and on the earthquake response of structures. In the present work, the study is extended to an investigation of 2-D site amplification of non-vertically propagating seismic shear waves in multilayered viscoelastic soil deposits. Sensitivity analyses of the effects of non-vertical incidence on site amplification functions are performed based on site geotechnical data collected from post-seismic investigations of the 1980 El-Asnam earthquake. Analytical results are discussed in terms of seismic site transfer functions, spectral ratios, surface acceleration time histories, and structural response spectra for different values of wave incidence angle. Both bedrock and rock outcropping cases are examined.  相似文献   

16.
The Sakarya prefecture is an interesting area with various seismicity types. This activity comes from earthquakes occurring at the North Anatolian Fault Zone and from a few quarry blast areas in the region. These quarry blast recordings produce errors in the determination of active faults and mapping of the microearthquake activity. Therefore, to recognize the tectonic activity in the region, we need to be able to discriminate between earthquakes and quarry blasts in the catalogues. In this study, a statistical analysis method (linear discriminant function) has been applied to classify seismic events occurring in the Sakarya region. We used 110 seismic events that were recorded by Sakarya University Seismic Station between 2012 and 2014. Time and frequency variant parameters, maximum S wave and maximum P wave amplitude ratio (S/P), the spectral ratio (Sr), maximum frequency (fmax), and total signal duration of the waveform were used for discrimination analyses. The maximum frequency (fmax) versus time duration of the seismic signal gives a higher classification percentage (94%) than the other discriminants. At the end of this study, 41 out of 110 events (44%) are determined as quarry blasts, and 62 (56%) are considered as earthquakes.  相似文献   

17.
The Tyrrhenian portion of the Calabria region (southern Italy) is particularly prone to landslides as a consequence of intense morphodynamic processes. These processes affect the slopes that are composed of highly jointed metamorphic rock masses. Moreover, the frequent intense rainfalls and the up to Mw 7.0 regional earthquakes represent the main landslide triggering factors. An area of approximately $45\,\hbox {km}^{2}$ was selected as a test site in the context of a regional project aimed at reconstructing possible earthquake-reactivated landslide scenarios (i.e., referred to already existing landslide masses). An inventory map led to the identification of 175 landslides, including rock slides, earth slides and rock falls. Ground-motion scenarios based on a spectral-matching method were derived to evaluate the expected earthquake-induced displacements of the existing landslides. Naturally recorded acceleration time histories were selected from international ground-motion databases based on a similarity index and considered representative of the seismological features of the considered seismic sources (i.e., epicentral distance, magnitude, focal mechanism). Spectral attenuation was considered, according to well-established attenuation laws, to define the expected response spectrum at the outcropping bedrock corresponding to each existing landslide. Subsequently, the selected natural records were modified to guarantee spectral matching with the attenuated response spectra at each landslide site. The derived time histories were used to compute co-seismic displacements via the classic Newmark’s sliding-block method. Different scenarios of co-seismic landslide displacements or collapse were generated for different pore-water pressure hypotheses. The strongest $\hbox {Mw}>6$ seismic scenario (Messina Straits seismogenic source) indicated an exceedance probability of earthquake-induced co-seismic landslide collapse varying from 20 to 55 % with the increasing severity of the pore-water pressures. This probability corresponds to a percentage of co-seismic landslide displacements up to 40 % of the total inventoried landslides. The exceedance probability indicated that co-seismic landslide collapse drops below 20 % for $\hbox {Mw}<6$ seismic scenarios. In contrast, if a uniform probability is assumed for the seismic action occurrence, i.e., return periods of 475 and 2,475 years, the total percentage of landslide co-seismic displacements could be as high as 70 and 90 %, respectively, for the considered pore-water pressures.  相似文献   

18.
The results of a macroseismic study of the late medieval Turkish Yeni-Kale fortress in Eastern Crimea are described. Despite the fact that the fortress’ structures were considerably affected by local landslide activity, military operations during the Crimean War, the Civil War, and the WWII, as well as by anthropogenic factors, such as railroads, etc., numerous specific deformations in the fortress walls suggest that the existing destruction and damage might be explained by strong seismic impacts. The local intensity of seismic oscillations could be I = (VIII)–IX points according to the MSK-64 macroseismic scale, and the direction of the combined maximum seismic impact could have a NW–SE strike. It is likely that the Turks abandoned the fortress without a battle because of its significant seismic damage and destruction in the 18th century, which had not yet been repaired by the time the Russian army arrived.  相似文献   

19.
A vulnerability analysis of c.300 unreinforced Masonry churches in New Zealand is presented. The analysis uses a recently developed vulnerability index method (Cattari et al. in Proceedings of the New Zealand Society for Earthquake Engineering NZSEE 2015 conference, Rotorua, New Zealand, 2015a; b; SECED 2015 conference: earthquake risk and engineering towards a Resilient World, Cambridge; Goded et al. in Vulnerability analysis of unreinforced masonry churches (EQC 14/660)—final report, 2016; Lagomarsino et al. in Bull Earthq Eng, 2018), specifically designed for New Zealand churches, based on a widely tested approach for European historical buildings. It consists of a macroseismic approach where the seismic hazard is defined by the intensity and correlated to post seismic damage. The many differences in typologies of New Zealand and European churches, with very simple architectural designs and a majority of one nave churches in New Zealand, justified the need to develop a method specifically created for this country. A statistical analysis of the churches damaged during the 2010–2011 Canterbury earthquake sequence was previously carried out to develop the vulnerability index modifiers for New Zealand churches. This new method has been applied to generate seismic scenarios for each church, based on the most likely seismic event for 500 years return period, using the latest version of New Zealand’s National Seismic Hazard Model. Results show that highly vulnerable churches (e.g. stone churches and/or with a weak structural design) tend to produce higher expected damage even if the intensity level is lower than for less vulnerable churches in areas with slightly higher seismicity. The results of this paper provide a preliminary tool to identify buildings requiring in depth structural analyses. This paper is considered as a first step towards a vulnerability analysis of all the historical buildings in the country, in order to preserve New Zealand’s cultural and historical heritage.  相似文献   

20.
The purpose of this work is to define a seismic regionalization of Mexico for seismic hazard and risk analyses. This seismic regionalization is based on seismic, geologic, and tectonic characteristics. To this end, a seismic catalog was compiled using the more reliable sources available. The catalog was made homogeneous in magnitude in order to avoid the differences in the way this parameter is reported by various agencies. Instead of using a linear regression to converts from m b and M d to M s or M w , using only events for which estimates of both magnitudes are available (i.e., paired data), we used the frequency-magnitude relations relying on the a and b values of the Gutenberg-Richter relation. The seismic regions are divided into three main categories: seismicity associated with the subduction process along the Pacific coast of Mexico, in-slab events within the down-going COC and RIV plates, and crustal seismicity associated to various geologic and tectonic regions. In total, 18 seismic regions were identified and delimited. For each, the a and b values of the Gutenberg-Richter relation were determined using a maximum likelihood estimation. The a and b parameters were repeatedly estimated as a function of time for each region, in order to confirm their reliability and stability. The recurrence times predicted by the resulting Gutenberg-Richter relations obtained are compared with the observed recurrence times of the larger events in each region of both historical and instrumental earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号