首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Masonry buildings worldwide exhibited severe damage and collapse in recent strong earthquake events. It is known that their brittle behavior, which is mainly due to the combination of low tensile strength, large mass and insufficient connection between structural elements, is the main limitation for their structural implementation in residential buildings. A new construction system for masonry buildings using concrete blocks units and trussed reinforcement is presented here and its seismic behavior is validated through shaking table tests. Dynamic tests of two geometrically identical two-story reduced scale (1:2) models have been carried out, considering artificial accelerograms compatible with the elastic response spectrum defined by the Eurocode 8. The first model was reinforced with the new proposed system while the second model was built with unreinforced masonry. The experimental analysis encompasses local and global parameters such as cracking patterns, failure mechanisms, and in-plane and out-of-plane behavior in terms of displacements and lateral drifts from where the global dynamic behavior of the two buildings is analyzed comparatively. Finally, behavior factors for the design recommendations in case of unreinforced masonry are also evaluated.  相似文献   

2.
砖砌体墙片抗震修复与加固伪静力试验   总被引:12,自引:0,他引:12  
对在各种压应力下的240标准砖墙片、试验之前及试验开裂以后用GFRP粘贴墙面和增加钢筋网砂浆面层方法加固的墙片,采用伪静力装置水平加载方法,检验加固的效果。试验证明了对于砂浆强度很低的砌体,GFRP加固能有效增强砌体抗震整体性,具有等效于提高砂浆强度的效果,要提高抗裂和极限承载力则GFRP的厚度应满足其抗拉能力大于砌体的抗剪能力。对于到达过极限承载力破坏后的墙片,GFRP加固能使得墙片基本恢复到原有的最大承载力。而钢筋网砂浆面层加固能有效提高砌体的抗震能力。  相似文献   

3.
A non-linear finite element model for plain masonry structures under lateral static loads and seismic base inputs is presented. Three super-imposed elasto-plastic shear elements are used in order to approximate the typical force-displacement curve for masonry. Material properties are identified with respect to results of shear tests on single piers. Modelling of entire structures is then performed and the numerical results are satisfactorily checked against the experimental outputs of static and shaking table tests of simple 1 and 2 storey buildings. The out of plane behaviour of walls is accounted for by means of a simplified method.  相似文献   

4.
The buildings’ capacity to maintain minimum structural safety levels during natural disasters, such as earthquakes, is recognisably one of the aspects that most influence urban resilience. Moreover, the public investment in risk mitigation strategies is fundamental, not only to promote social and urban and resilience, but also to limit consequent material, human and environmental losses. Despite the growing awareness of this issue, there is still a vast number of traditional masonry buildings spread throughout many European old city centres that lacks of adequate seismic resistance, requiring therefore urgent retrofitting interventions in order to both reduce their seismic vulnerability and to cope with the increased seismic requirements of recent code standards. Thus, this paper aims at contributing to mitigate the social and economic impacts of earthquake damage scenarios through the development of vulnerability-based comparative analysis of some of the most popular retrofitting techniques applied after the 1998 Azores earthquake. The influence of each technique individually and globally studied resorting to a seismic vulnerability index methodology integrated into a GIS tool and damage and loss scenarios are constructed and critically discussed. Finally, the economic balance resulting from the implementation of that techniques are also examined.  相似文献   

5.
对1/4比例的9层组合砌体房屋模型进行了拟静力试验,得到此类结构的有关抗震性能指标,在此基础上,对试验模型和原型房屋进行了非线性地震反应分析,探讨了此类房屋的动力反应特性,对组合砌体房屋的抗震能力作出了较为客观的评价,并对应采取的抗震措施提出了建议。  相似文献   

6.
Stone masonry is one of the oldest building techniques used worldwide and it is known to exhibit poor behaviour under seismic excitations. In this context, this work aims at assessing the in-plane behaviour of an existing double-leaf stone masonry pier by experimental testing. Additionally, a detailed 3D finite element numerical analysis based on micro-modelling of the original pier is presented (fully describing the geometry and division of each individual elements, namely infill, blocks and joints) aiming at simulating the experimental test results. This numerical strategy can be seen as an alternative way of analysing this type of constructions, particularly useful for laboratory studies, and suitable for the calibration of simplified numerical models. As part of a wider research activity, this work is further complemented with the presentation of an effective retrofit/strengthening technique (reinforced connected plaster) to achieve a significant improvement of its in-plane cyclic response which is experimentally verified in the results presented herein.  相似文献   

7.
8.
In this paper, the seismic resistance of unreinforced masonry (URM) cylindrical columns is investigated with an equivalent static analysis procedure. To this end, an existing numerical model developed for the stability analysis of masonry elements with rectangular cross-section is utilized and modified for the cylindrical columns. In the numerical model which takes into account the cracking of the sections and the second-order effects, the columns are divided ideally into sufficiently high number of elements, each having uniform curvature. The columns are modeled as prismatic cantilevers undergoing their own weights, eccentric vertical loads and distributed and concentrated static horizontal loads equivalent to the inertia actions. By considering two examples of columns, firstly a reference column and secondly a column from a real building, lateral seismic coefficient versus top drift level curves are obtained. On the basis of these curves, lateral load behavior of the columns is interpreted and maximum seismic load values which can be resisted by each column are determined. Implementing parametric analyses on the reference column, sensitivity of the seismic resistance to parameters such as column slenderness, magnitude and eccentricity of vertical top load, and the flexibility parameter is determined. The influence of some structural imperfections such as the deviation from vertical on the seismic resistance is also discussed in the paper.  相似文献   

9.
Sandwich masonry walls are widely used as energy-saving panels since the interlayer between the outer leaves can act as an insulation layer.New types of sandwich walls are continually being introduced in research and applications,and due to their unique bond patterns,experimental studies have been performed to investigate their mechanical properties,especially with regard to their seismic performance.In this study,three new types of sandwich masonry wall have been designed,and cyclic lateral loading tests were carried out on five specimens.The results showed that the specimens failed mainly due to slippage along the bottom cracks or the development of diagonal cracks,and the failure patterns were considerably influenced by the aspect ratio.Analysis was undertaken on the seismic response of the new walls,which included ductility,stiffness degradation and energy dissipation capacity,and no obvious difference was observed between the seismic performance of the new walls and traditional walls.Comparisons were made between the experimental results and the calculated results of the shear capacity.It is concluded that the formulas in the two Chinese codes(GB 50011 and GB 50003) are suitable for the calculation of the shear capacity for the new types of walls,and the formula in GB 50011 tends to be more conservative.  相似文献   

10.
The macroelement technique for modelling the nonlinear response of masonry panels is particularly efficient and suitable for the analysis of the seismic behaviour of complex walls and buildings. The paper presents a macroelement model specifically developed for simulating the cyclic in‐plane response of masonry walls, with possible applications in nonlinear static and dynamic analysis of masonry structures. The model, starting from a previously developed macroelement model, has been refined in the representation of flexural–rocking and shear damage modes, and it is capable of fairly simulating the experimental response of cyclic tests performed on masonry piers. By means of two internal degrees of freedom, the two‐node macroelement permits to represent the coupling of axial and flexural response as well as the interaction of shear and flexural damage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
为研究竖向压应力和高宽比对砖墙体抗震性能的影响,以砖墙体抗震承载力典型试验试件为基础,利用有限元分析软件ANSYS建立适当的空间模型。根据砖墙体的破坏模式和材料性能把墙体划分成块体单元、灰缝单元以及接触单元,为各部分材料选用不同的本构关系模型与破坏准则。并将计算结果与试验结果进行对比,验证文中模型的可适用性。选用经验证后的模型,变换竖向压应力和高宽比,得出相应的结论:墙体的开裂荷载和抗侧承载力随着高宽比的增大明显呈降低的趋势;不同高宽比的墙体,竖向压应力的影响规律不尽相同。  相似文献   

12.
The collapse of stone masonry is one of the greatest causes of death in major earthquake events around the world. This paper investigates a recently developed retrofitting technology specifically aimed at preventing or prolonging the collapse of stone masonry buildings under strong earthquakes. This technology uses common polypropylene packaging straps to form a mesh, which is then used to prevent or prolong collapse. This paper examines the findings from static and dynamic testing of the proposed retrofit. It is shown that the proposed technique effectively prevents brittle masonry collapse and the loss of debris.  相似文献   

13.
The performance of force-based and displacement-based seismic assessment methods for the life-safety limit state check of out-of-plane loaded unreinforced masonry walls is evaluated on the basis of refined numerical simulations. For this purpose, a discrete element model of a vertically spanning wall is built and validated against experimental results from static and dynamic test conditions. The model is then analysed for a large range of wall configurations. For each configuration, a static pushover analysis and a series of incremental dynamic analyses are run, the latter permitting to determine the capacity of the wall under dynamic loading. The accuracy of the assessment methods in predicting the acceleration at which the walls collapse is evaluated. It is found that the displacement-based method is more accurate, robust, and safe than the force-based method. The comparison also shows that for walls characterised by a relatively high ratio of axial load to Euler's critical load, both assessment methods lead to an overestimation of the wall capacity. As a remedy, a modification to the methods based on a recently developed mechanical model is put forward and tested. For the force-based method, it is additionally suggested to set for walls with relatively high overburden ratios the behaviour factor equal to 1. To ensure reproducibility of this study, all input and output files of the numerical simulations are made publicly available.  相似文献   

14.
针对结构动态响应监测三维变形的需求,研究立体视觉三维测量算法,建立基于结构测面的世界坐标系,得到结构振动响应三维位移公式.研究圆形标识点边缘检测、中心拟合及匹配约束算法,编译基于MATLAB平台的立体视觉结构振动测试分析软件.使用本文集成的立体视觉测量系统完成不同加速度峰值Taft波及El Centro波作用下砌体房屋模型振动台试验,同时测得结构三维位移时程曲线.面内位移时程曲线表明立体视觉方法与位移计数据吻合非常好,证实立体视觉测量方法的有效性.离面位移时程曲线表明砌体房屋模型在地震动作用下发生扭转,且随地震动加速度峰值增大,扭转反应加剧,充分验证立体视觉方法用于监测结构三维振动响应的可靠性及实用性.  相似文献   

15.
Bulletin of Earthquake Engineering - Seismic modelling of unreinforced masonry (URM) buildings is addressed worldwide according to different approaches, not only at research level, but also in the...  相似文献   

16.
Unreinforced masonry infills are widely used in many parts of the world and it is common practice for seismic design to use simplified methods that usually do not take into account the interaction between the infill and the structure. Starting from the 1950s, many researchers have investigated the lateral response of masonry infills focusing on several different topics. The scientific interest on masonry infills is continuously raising due to the unsatisfactory seismic response of the infilled frame structures observed during post-event inspections and to the difficulty to contrive a widely scientifically and practical recognized solution. Although some modern codes consider the presence of infills with some specifications to prevent damage in the masonry panels and global and local effects on the structure, an effective evaluation of these detrimental effects has not been achieved yet. Within this paper, a FEM simulation of in-plane pseudo-static cyclic tests on a RC frame specimen infilled with unreinforced Autoclaved Aerated Concrete (AAC) masonry infill has been performed in order to study accurately the influence and the interaction of the infill with the RC structure. The experimental results performed by Calvi and Bolognini (J Earthq Eng 5:153–185, 1999), and Penna and Calvi (Campagna sperimentale su telai in c.a. con tamponamenti in Gasbeton (AAC) con diverse soluzioni di rinforzo” (in Italian), 2006) on one-bay one-storey full scale specimens are taken as reference. Non-linear static analyses using a “meso-modelling” approach have been carried out. The masonry used in the model has been calibrated according to tests of mechanical characterization and to in-plane cyclic tests on load-bearing AAC masonry conducted by Costa et al. (J Earthq Eng 15:1–31, 2011). The analyses performed have allowed to investigate the local effects on the frame and, in particular, the changes in the moment and shear demands on the RC elements due to the presence of the AAC infill in comparison with the ones in the bare structure, and to estimate the thrust and the contact length activated by the infill on the frame.  相似文献   

17.
新型节能复合混凝土空心砌块砌体抗震性能的试验研究   总被引:2,自引:0,他引:2  
本文通过2片开窗洞加窗台梁节能复合混凝土小型空心砌块墙体和2片不开窗洞墙体的水平低周反复荷载试验,研究了节能复合混凝土小型空心砌块砌体墙的受力全过程、开裂部位、裂缝发展情况以及破坏形态,分析了墙体的滞回特性、延性、耗能能力,刚度退化曲线等抗震性能,同时,考察了墙体外叶保护层的受力性能、破坏程度以及与墙体的共同工作机理,探讨了不同构造措施以及开窗洞对墙体抗震性能的影响。研究结果表明:复合混凝土小型砌块砌体从开始加载到最终破坏,砌块保护层都没有明显的鼓凸和脱落现象,说明聚苯层及横向拉结筋能够提供可靠的连接,保证外叶保护层在水平剪力和竖向荷载共同作用下和墙体整体工作,此外,开窗洞对墙体的抗震性能削弱较大。  相似文献   

18.
为了解高性能水泥复合砂浆钢筋网薄层(HPFL)加固对多孔砖砌体抗震性能的加固效果及纵筋数量和加固方式因素的影响,制作了2个对比试件和10个加固试件进行拟静力试验.试验结果表明:加固后试件的抗震抗剪承载力得到了显著提高,提高幅度达22.3%~ 49.4%;变形能力和耗能能力也得到明显的提高.圈梁构造柱条带加固对抗剪承载力的提高稍低于剪刀撑条带加固方式,但对延性和耗能能力的提高却更显著.条带纵筋数量的增加可以有效提高加固效果.根据试验结果和理论分析,拟合了HPFL加固多孔砖砌体抗震抗剪承载力的计算公式,可供工程加固设计时参考使用.  相似文献   

19.
In this part, the parameter functions for clay brick masonry appearing in the non-linear model are established for the wall material used in the experiments by means of experimental data and a particular type of optimization. This special optimization makes use of the fact that the wall behaves linearly at the intensity level of each excitation, as described in Part 1, and involves matching in frequency space the experimental and theoretical complex frequency response functions relating the Fourier transforms of the top and base accelerations of the wall. It is found that the envelope curves for the parameter functions are bilinear and that the dynamic values of mechanical properties of masonry differ greatly from their static values. The completed model is appraised by comparing how the wall will respond to strong earthquake excitations when predicted using the model and how it actually responded on the shaking table. The predicted response is remarkably close to the experimental.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号