首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
We examine the unsteady response of a neutral atmospheric boundary layer (ABL) of depth h and friction velocity u * when a uniform surface heat flux is applied abruptly or decreased rapidly over a time scale t<inf>θ</inf> less than about h /(10u *). Standard Monin–Obukhov (MO) relationships are used for the perturbed eddy viscosity profile in terms of the changes to the heat flux and mean shear. Analytical solutions for changes in temperature, mean wind and shear stress profile are obtained for the surface layer, when there are small changes in h /|LMO| over the time scale tMO~|L MO|/(10u*) (where L MO and t MO are the length and time scales, respectively). They show that a maximum in the wind speed profile occurs at the top of the thermal boundary layer for weak surface cooling, i.e. a wind jet, whereas there is a flattening of the profile and no marked maximum for weak surface heating. The modelled profiles are approximately the same as those obtained from the U.K. Met Office Unified Model when operating as a mesoscale model at 12-km horizontal resolution. The theoretical model is modified when strong surface heating is suddenly applied, resulting in a large change in h /|L MO| (>>1), over the time scale t MO. The eddy structure is predicted to change significantly and the addition of convective turbulence increases the shear turbulence at the ground. A low-level wind jet can form, with convective turbulence adding to the mean momentum of the flow. This was verified by our laboratory experiment and direct numerical simulations. Additionally, it is shown that the effects of Coriolis acceleration diminish (rather than as suggested in the literature, amplify) the formation of the wind jets in the situations considered here. Hence, only when the surface heat flux changes over time scales greater than 1/f (where f is the Coriolis parameter) does the ABL adjust monotonically between its equilibrium states. These results are also applicable to the ABL passing over spatially varying surface heat fluxes.  相似文献   

2.
Motivated by the observation that the diurnal evolution of sensible and latent heat fluxes tends to maintain a constant Bowen ratio, we derive approximate solutions of the ordinary differential equations of a simplified atmospheric boundary-layer (ABL) model. Neglecting the early morning transition, the potential temperature and specific humidity of the mixed layer are found to be linearly related to the ABL height. Similar behaviour is followed by the inversion strengths of temperature and humidity at the top of the ABL. The potential temperature of the mixed layer depends on the entrainment parameter and the free-atmosphere temperature lapse rate, while the specific humidity also depends on the free-atmosphere humidity lapse rate and the Bowen ratio. The temporal dynamics appear only implicitly in the evolution of the height of the boundary layer, which in turn depends on the time-integrated surface sensible heat flux. Studying the limiting behaviour of the Bowen ratio for very low and very large values of net available energy, we also show how the tendency to maintain constant Bowen ratio during midday hours stems from its relative insensitivity to the atmospheric conditions for large values of net available energy. The analytical expression for the diurnal evolution of the ABL obtained with constant Bowen ratio is simple and provides a benchmark for the results of more complex models.  相似文献   

3.
In this paper, the attractors of turbulent flows in phase space are reconstructed by the time delay technique using observed data of atmospheric boundary-layer turbulence, which include high resolution temperature, humidity andthree-dimensional wind speed measurements in Gansu province and Beijing, China. The correlation dimensions and largest Lyapunov exponents have been computed. The results indicate that all the largest Lyapunov exponents in different conditions of time, site and atmospheric stability are greater than zero. This means that the atmospheric boundary-layer turbulence system is really chaotic and has appropriate low-dimensional strange attractors whose dimension numbers range from 3 to 7 and vary with different variables (dynamical variables or non-dynamical variables) and atmospheric stability. Turbulent kinetic energy is first applied to reconstruct the attractor of turbulence, and is found to be feasible.  相似文献   

4.
This paper describes the Stable AtmosphericBoundary Layer Experiment in Spain (SABLES 98),which took place over the northern Spanish plateaucomprising relatively flat grassland,in September 1998. The main objectives of the campaign were to study the properties of themid-latitude stable boundary layer (SBL).Instrumentation deployed on two meteorologicalmasts (of heights 10 m and 100 m)included five sonic anemometers, 15 thermocouples,five cup anemometers and three propeller anemometers,humidity sensors and radiometers.A Sensitron mini-sodar and a tetheredballoon were also operated continuously. Atriangular array of cup anemometers wasinstalled to allow the detection ofwave events. Two nocturnal periods analysedon 14–15 and 20–21 September are used toillustrate the wide-ranging characteristics of the SBL.  相似文献   

5.
大气边界层湍流温度序列的信息熵分析   总被引:2,自引:0,他引:2  
利用大气边界层内近地面的大气湍流温度时间序列,运用功率谱分析、信息熵分析等方法,分析了大气边界层内近地面的大气湍流特点,并对稳定层和不稳定层的大气湍流进行了对比。结果表明,信息熵和功率谱指数是区别稳定层结和不稳定层结大气边界层湍流特征的指标,对造成两者之间的差别做出了对应的解释。  相似文献   

6.
Elucidating cold-air-pooling processes forms part of the longstanding problem of parametrizing the effects of complex terrain in larger-scale numerical models. The Weather Research and Forecasting model has been set-up and run at high resolution over an idealized alpine-valley domain with a width of order 10 km, to investigate the four-dimensional variation of key cold-air-pooling forcing mechanisms, under decoupled stable conditions. Results of the simulation indicated that the total average valley-atmosphere cooling is driven by a complex balance/interplay between radiation and dynamical effects. Three fairly distinct regimes in the evolution of cold-air-pooling processes have been identified. Starting about 1 h before sunset, there is an initial 30-min period when the downslope flows are initiated and the total average valley-atmosphere instantaneous cooling is dominated by radiative heat loss. A period of instability follows, when there is a competition between radiation and dynamical effects, lasting some 90 min. Finally, there is a gradual reduction of the contribution of radiative cooling from 75 to 37 %. The maximum cold-air-pool intensity corresponds to the time of minimum radiative cooling, within the period of instability. Although, once the flow is established, the valley atmosphere cools at broadly similar rates by radiation and dynamical effects, overall, radiation effects dominate the total average valley-atmosphere cooling. Some of the intricacies of the valley mixing have been revealed. There are places where the dynamics dominate the cooling and radiation effects are minor. Characteristics of internal gravity waves propagating away from the slopes are discussed.  相似文献   

7.
Forcing relationships in steady, neutrally stratified atmospheric boundary-layer (ABL) flow are thoroughly analyzed. The ABL flow can be viewed as balanced between a forcing and a drag term. The drag term results from turbulent stress divergence, and above the ABL, both the drag and the forcing terms vanish. In computational wind engineering applications, the ABL flow is simulated not by directly specifying a forcing term in the ABL but by specifying boundary conditions for the simulation domain. Usually, these include the inflow boundary and the top boundary conditions. This ‘boundary-driven’ ABL flow is dynamically different from its real counterpart, and this is the major reason that the simulated boundary-driven ABL flow does not maintain horizontal homogeneity. Here, first a dynamical approach is proposed to develop a neutrally stratified equilibrium ABL flow. Computational fluid dynamics (CFD) software (Fluent 6.3) with the standard \(k\) \(\varepsilon \) turbulence model is employed, and by applying a driving force profile, steady equilibrium ABL flows are simulated by the model. Profiles of wind speed and turbulent kinetic energy (TKE) derived using this approach are reasonable in comparison with the conventional logarithmic law and with observational data respectively. Secondly, the equilibrium ABL profiles apply as inflow conditions to simulate the boundary-driven ABL flow. Simulated properties between the inlet and the outlet sections across a fetch of 10 km are compared. Although profiles of wind speed, TKE, and its dissipation rate are consistently satisfactory under higher wind conditions, a deviation of TKE and its dissipation rate between the inlet and outlet are apparent (7–8 %) under lower wind-speed conditions (2 m s \(^{-1}\) at 10 m). Furthermore, the simulated surface stress systematically decreases in the downwind direction. A redistribution of the pressure field is also found in the simulation domain, which provides a different driving pattern from the realistic case in the ABL.  相似文献   

8.
复杂地形边界层风场的三维局地尺度数值模拟   总被引:1,自引:0,他引:1  
设计了一个基于有限元方法的中γ尺度复杂地形条件下的三维非静力边界层风场数值模式,利用该模式对河南省登封市阳城工业区周围的实际三维地形进行了数值模拟,并将模拟结果与河南省气象科学研究所的实测资料进行了对比。结果表明,模式对峡谷地形的加速作用、山体的抬升与绕流均有较好的模拟,但是对背风坡涡旋的模拟不太理想。与实测资料的对比显示,在一定的条件下,模式可以得到较好的模拟结果。  相似文献   

9.
Simplified numerical models of the atmospheric boundary layer (ABL) are useful both for understanding the underlying dynamics and potentially providing parsimonious modelling approaches for inclusion in larger models. Herein the governing equations of a simplified slab model of the uniformly mixed, purely convective, diurnal ABL are shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed in integral form. By employing a linearized saturation vapour relation, the height of the mixed layer is shown to obey a non-linear ordinary differential equation with quadratic dependence on ABL height. A perturbation solution provides general analytical approximations, of which the leading term is shown to represent the contribution under equilibrium evaporation. These solutions allow the diurnal evolution of the height, potential temperature, and specific humidity (i.e., also vapour pressure deficit) of the mixed layer to be expressed analytically for arbitrary radiative forcing functions.  相似文献   

10.
11.
12.
A generalized form of a recently developed minimum dissipation model for subfilter turbulent fluxes is proposed and implemented in the simulation of thermally stratified atmospheric boundary-layer flows. Compared with the original model, the generalized model includes the contribution of buoyant forces, in addition to shear, to the production or suppression of turbulence, with a number of desirable practical and theoretical properties. Specifically, the model has a low computational complexity, appropriately switches off in laminar and transitional flows, does not require any ad hoc shear and stability corrections, and is consistent with theoretical subfilter turbulent fluxes. The simulation results show remarkable agreement with well-established empirical correlations, theoretical predictions, and field observations in the atmosphere. In addition, the results show very little sensitivity to the grid resolution, demonstrating the robustness of the model in the simulation of the atmospheric boundary layer, even with relatively coarse resolutions.  相似文献   

13.
The traditional Ekman boundary-layer parameterization is introduced into the quasigeostrophic Eady baroclinic instability model and into the deformation flow model, to couple the planetary boundary layer with the inviscid interior flow aloft. An explicit time-dependent version of this parameterization is then introduced into an unbalanced zero potential vorticity model to evaluate the initial transient response. It is noted that the adaptation of the geostrophic flow to the same parameterization is different in each of the balanced models. The characteristic flow response reflects thedifferent constraints imposed by each model. Further, the zero potential vorticity condition constrains the evolution of the baroclinic geostrophic part of the flow, which leads to an unphysical flow response when the Ekman boundary-layer parameterization is employed with this unbalanced model. The barotropic part of the flow does, however, evolve in a physically consistent manner spinning down to reflect the introduction of low momentum air pumped into the interior from the boundary layer. Moreover, the transient spin-up processis shown to have an insignificant effect on this spin-down process.  相似文献   

14.
Determining Boundary-Layer Height from Aircraft Measurements   总被引:1,自引:0,他引:1  
The height of the atmospheric boundary layer (ABL) is an important variable in both observational studies and model simulations. The most commonly used measurement for obtaining ABL height is a rawinsonde profile. Mesoscale or regional scale models use a bulk Richardson number based on profiles of the forecast variables. Here we evaluate the limitations of several frequently-used approaches for defining ABL height from a single profile, and identify the optimal threshold value for each method if profiles are the only available measurements. Aircraft measurements from five field projects are used, representing a variety of ABL conditions including stable, convective, and cloud-topped boundary layers over different underlying surfaces. ABL heights detected from these methods were validated against the ‘true’ value determined from aircraft soundings, where ABL height is defined as the top of the layer with significant turbulence. A detection rate was defined to denote how often the ABL height was correctly diagnosed with a particular method. The results suggest that the temperature gradient method provides the most reasonable estimates, although the detection rate and suitable detection criteria vary for different types of ABL. The Richardson number method, on the other hand, is in most cases inadequate or inferior to the other methods that were tried. The optimal range of the detection criteria is given for all ABL types examined in this study.  相似文献   

15.
张秀英  冯学智 《高原气象》2006,25(1):123-127
在数字地形模型(DTM)的基础上,利用地理信息系统软件ArcGIS确定阴影、提供的地图代数语言功能,模拟了甘肃定西安家沟小流域任意时段内天文辐射的空间分布。该模型借助于ArcGIS的地形分析功能,解决了常规方法不能解决的地形遮蔽对天文辐射的影响。该模型是一个物理模型,对天文辐射能的时空分布可做出较精确描述,提供在常规条件下的重要参数。时空分布分析表明:地形对天文辐射的影响很大,尤其是坡向的影响;天文辐射随着季节变化很大,从3月底开始直到6月上旬一直处于上升阶段,然后下降;地形对天文辐射的影响程度随着季节不同有所不同,但是没有表现出明显的规律。  相似文献   

16.
A linear theory of airflow over low hills andthe MSFD–STAB model are comparedwith published observations made at Cooper'sRidge, north–west of Goulburn inNew South Wales, Australia. The MSFD–STABmodel results show good agreementwith field data in weak to moderate stablystratified flow cases. The originallinear theory overpredicts the wind speed-upratio even in weakly stablecases. After some modification, the agreementis greatly improved.  相似文献   

17.
关于大气过程可预报性问题的一些讨论   总被引:4,自引:2,他引:4  
卞建春  杨培才 《高原气象》2003,22(4):315-323
从非线性角度重新解读了von Neumann提出的大气运动三个分类,指出大气过程预报问题中存在两类不确定性——初始条件的不确定性和外强迫条件的不确定性,它们分别成为第一类可预报性与第二类可预报性问题的研究对象。强调了大气过程可预报性的客观存在性,由于大气过程的复杂性及人类观测手段和认识水平的限制,人们只能给出这些可预报性的估计,逐日天气预报存在上限(2周左右)。分析了预报误差产生的来源是初始条件的不确定性和预报模式的不完善性,但根本原因是大气过程的混沌本质;还分析了混沌系统误差增长理论,但由于实际大气过程包含很多显著不同的时空尺度以及不同尺度间的相互作用,人们对大气过程复杂的误差增长规律的认识还不是很清楚;最后讨论了动力学数值模式中不同的空间分辨率会改变系统的性质,指出可预报性问题的研究必须考虑空间分辨率的影响。而在讨论初值不确定性对预报的影响时,不需要考虑控制参数微小变化产生的影响,当然条件是控制参数的微小变化不会引起系统性质的重大变化。  相似文献   

18.
An examination of boundary-layer meteorological and avian aerodynamic theories suggests that soaring birds can be used to measure the magnitude of vertical air motions within the boundary layer. These theories are applied to obtain mixed-layer normalized thermal updraft intensity over both flat and complex terrain from the climb rates of soaring American white pelicans and from diagnostic boundary-layer model-produced estimates of the boundary-layer depth zi and the convective velocity scale w*. Comparison of the flatland data with the profiles of normalized updraft velocity obtained from previous studies reveals that the pelican-derived measurements of thermal updraft intensity are in close agreement with those obtained using traditional research aircraft and large eddy simulation (LES) in the height range of 0.2 to 0.8 zi. Given the success of this method, the profiles of thermal vertical velocity over the flatland and the nearby mountains are compared. This comparison shows that these profiles are statistically indistinguishable over this height range, indicating that the profile for thermal updraft intensity varies little over this sample of complex terrain. These observations support the findings of a recent LES study that explored the turbulent structure of the boundary layer using a range of terrain specifications. For terrain similar in scale to that encountered in this study, results of the LES suggest that the terrain caused less than an 11% variation in the standard deviation of vertical velocity.  相似文献   

19.
TheEfectofMesoscaleFlowsonRegionalAtmosphericTransportinaComplexTerainJiaXinyuan(贾新媛)InstituteofAtmosphericPhysics,ChineseAca...  相似文献   

20.
Boundary-Layer Ozone in Croatia   总被引:7,自引:0,他引:7  
An analysis of ozone distribution in the atmosphericboundary layer based on monitoring data from two TORstations in Croatia is given. The levels were found tobe generally higher than expected for the continentalbackground. At the Puntijarka station, which can betaken as representative for the region, high valuesare mainly associated with transport from the west.The RBI station represents an urban site withoccasional photosmog situations. Short termmeasurements along the Adriatic coast have shown thatthere is a negative north to south gradient in ozoneconcentration as predicted by model calculations, butalso that some local photochemical production takesplace even at the remote Adriatic island far frompollution sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号