首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
陈志刚 《地震学报》2015,37(4):617-1244
本文采用复变函数方法研究了稳态水平剪切波(SH波)在各向异性弹性半空间中任意形状孔洞上的散射及其对地面运动的影响.在变换空间中构造出自动满足各向异性半空间水平表面上应力为零的散射波函数,并根据孔洞表面应力为零的边界条件,采用最小二乘法求解散射波函数的系数.用介质的各向异性性质来模拟地质条件,给出了SH波作用下含圆孔、椭圆孔和方孔的各向异性半空间表面位移幅值的数值结果,并分析了介质特性、孔洞的形状、埋深、入射波波数及入射角度等因素对地面运动的影响规律.数值结果表明:介质的各向异性对含有孔洞的半空间表面的地表位移具有显著的影响;沿一定角度的入射波在某一频段内所引起的地表位移幅值比各向同性介质的可能要大,且随着孔洞埋深的增加,地表位移的幅值逐渐减小.   相似文献   

2.
以基岩上单一土层场地为例, 计算分析了在斜入射平面SH波作用下弹性层状半空间中无限长洞室附近的地表位移. 研究表明, 层状半空间中地下洞室对波的散射与均匀半空间情况存在显著差别. 层状场地由于考虑了场地自身的动力特性, 使得洞室附近地表位移幅值的空间变化更为复杂, 基岩与土层刚度比、 土层厚度对散射效应均有着重要影响. 随着基岩与土层刚度比的增大, 地表位移幅值整体上逐渐增大; 随着土层厚度的增大, 土层对地表位移幅值的影响逐渐减小. 在频域解答的基础上, 给出了层状半空间中洞室对斜入射SH波散射的时域解答, 并以Ricker波为例进行了数值计算.   相似文献   

3.
以基岩上单-土层场地为例,计算分析了在斜入射平面SH波作用下弹性层状半空间中无限长洞室附近的地表位移.研究表明,层状半空间中地下洞室对波的散射与均匀半空间情况存在显著差别.层状场地由于考虑了场地自身的动力特性,使得洞室附近地表位移幅值的空间变化更为复杂,基岩与土层刚度比、土层厚度对散射效应均有着重要影响.随着基岩与土层刚度比的增大,地表位移幅值整体上逐渐增大;随着土层厚度的增大,土层对地表位移幅值的影响逐渐减小.在频域解答的基础上,给出了层状半空间中洞室对斜入射SH波散射的时域解答,并以Ricker波为例进行了数值计算.  相似文献   

4.
半无限空间界面附近SH波对圆形衬砌的散射   总被引:6,自引:2,他引:6  
建立了求解半无限空间中SH波对浅埋圆形衬砌结构的散射与动应力集中问题的解析方法。利用SH波散射的对称性和多极坐标的方法,在复平面上构造出了一个可以预先满足半空间自由表面上应力自由的边界条件的浅埋圆形衬砌对稳态SH波散射的波函数,并构造出衬砌内的散射波函数。然后根据衬砌周围的边界条件,将该问题转化为对一组无穷代数方程组的求解。最后给出了具体算例,并讨论了其数值结果。  相似文献   

5.
提出了一种新的求解任意排列、任意半径的弹性桩对平面SH波的多重散射的理论方法,以解决以往假设单重散射的计算方法中不考虑桩列作为整体屏障从而忽略桩间相互干涉关系的不足,并且可用于分析多排弹性桩对平面SH波的散射性状。在数值计算分析中讨论了散射重数,排间距,桩土剪切模量比,桩数等对双排弹性桩屏障隔离效果的影响,从而对实际工程中利用排桩进行振动污染的治理和屏障隔振设计提出了重要的理论依据。  相似文献   

6.
平面SV波在饱和半空间中沉积谷地周围的散射   总被引:1,自引:0,他引:1  
采用一种特殊的间接边界积分方程法,求解了平面SV波在饱和半空间中任意形状沉积谷地周围的二维散射问题。结合饱和半空间中膨胀波源和剪切波源格林函数,由分布在沉积和半空间交界面附近两虚拟波源面上的波源分别构造沉积内外的散射波场,由交界面连续条件建立方程并求解确定虚拟波源密度,总波场反应即可由自由波场和散射波场叠加而得。然后通过边界条件验算、退化解答与现有结果的比较以及稳定性检验,验证了方法的计算精度。通过一组典型算例,研究了平面SV波在饱和半空间中沉积谷地周围散射的基本规律,详细给出了不同参数情况沉积谷地附近地表位移幅值和孔隙水压,着重分析了入射SV波频率和角度、边界渗透条件、沉积孔隙率等因素对场地反应的影响,得出了一些有益的结论。  相似文献   

7.
SH波冲击下浅埋任意形孔洞的动力分析   总被引:5,自引:0,他引:5  
求解了稳态SH波垂直弹性半空间水平表面入射时,浅埋任意形孔洞的动力响应。采用复变函数和多极坐标方法构造了一个能够自动满足水平表面上应力自由边界条件的散射波函数。应用这一波函数,将半空间中的问题转化为求解一个全空间中任意形孔洞的散射问题,最终将问题归结为对一组无穷代数方程组的求解。作为对抗爆问题的研究,给出了浅埋椭圆孔和方孔附近的动应力集中系数的数值结果,并对算例进行了讨论。  相似文献   

8.
利用间接边界元法, 求解了弹性层状半空间中无限长洞室对斜入射平面SH波的三维散射问题. 通过与文献结果进行对比, 验证了本方法的正确性. 与工程中常用的二维模型比较表明, 工程中将三维散射问题简单地分解为平面内问题和平面外问题的做法存在较大误差. 文中并研究了斜入射角度对散射的影响, 表明斜入射角度对地表位移幅值有着重要影响.   相似文献   

9.
层状半空间中周期分布凸起地形对平面SH波的散射   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种新的以层状半空间中周期分布斜线荷载动力格林函数为基本解的间接边界元方法,研究了周期分布凸起地形对平面SH波的散射问题.方法将散射波场分解为凸起内部散射波场和凸起外部散射波场.凸起内部散射波场通过在凸起闭合边界上施加虚拟斜线荷载产生的动力响应来模拟,而凸起外部散射波场则通过在凸起与半空间交界面上施加虚拟周期分布斜线荷载产生的动力响应来模拟.周期分布斜线荷载动力格林函数的引入,使得本文方法仅需针对一个凸起进行边界单元的离散和求解,便可完成问题的求解,避免了通过截断无限边界求解而引入的误差,方法具有较高精度的同时显著降低了求解自由度.文中通过与已有结果的比较,验证了方法的正确性,并以均匀半空间和基岩上单一土层中周期分布凸起为例进行了数值计算分析.研究表明,凸起间距对凸起地形间的动力相互作用有着显著的影响,同时层状半空间中周期分布凸起地形对SH波的散射与均匀半空间情况也有着显著的差别.  相似文献   

10.
线源荷载对半圆形凸起圆形夹杂附近浅埋圆孔的动力作用   总被引:1,自引:0,他引:1  
采用复变函数法和Green函数法研究了在水平界面承受出平面线源荷载时弹性半空间内半圆形凸起的圆柱形弹性夹杂对浅埋圆孔的动力作用.该问题采用“分区”、“契合”思想求解.首先,将整个求解区域分割成两部分,其一为含半圆形凹陷和圆孔的弹性半空间,其二为圆柱形弹性夹杂;其次,构造满足含半圆形凹陷半空间水平界面应力自由和圆孔边界应力自由的散射波,构造满足圆形夹杂上半表面应力自由下半表面应力连续条件的驻波和散射波;最后,在两个区域的“公共边界”上实施“契合”,满足公共边界处位移和应力的连续性条件,同时满足圆孔边界应力自由的边界条件,建立起求解该问题的无穷代数方程组,并就具体算例分析讨论了浅埋圆孔边缘动应力集中系数(DSCF)的数值结果.结果表明:圆柱形弹性夹杂的“软”、“硬”对浅埋圆孔孔边动应力集中系数有不同的影响.  相似文献   

11.
Scattering and diffraction of elastic in-plane P- and SV-waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and strong motion seismologists for over forty years. The case of out-of-plane SH-waves on the same elastic canyon that is semicircular in shape on the half-space surface is the first such problem that was solved by analytic closed-form solutions over forty years ago by Trifunac. The corresponding case of in-plane P- and SV-waves on the same circular canyon is a much more complicated problem because the in-plane P- and SV- scattered waves have different wave speeds and together they must have zero normal and shear stresses at the half-space surface. It is not until recently in 2014 that analytic solution for such problem is found by Lee and Liu. This paper uses their technique of defining these stress-free scattered waves, which Brandow and Lee previously used to solve the problem of the scattering and diffraction of these in-plane waves on an almost-circular surface canyon that is arbitrary in shape, to the study of the scattering and diffraction of these in-plane waves on an almost circular arbitrary-shaped alluvial valley.  相似文献   

12.
Scattering and diffraction of elastic in-plane P-and SV-waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and strong motion seismologists for over forty years. The case of out-ofplane SH-waves on the same elastic canyon that is semicircular in shape on the half-space surface is the first such problem that was solved by analytic closed-form solutions over forty years ago by Trifunac. The corresponding case of in-plane P-and SV-waves on the same circular canyon is a much more complicated problem because the in-plane P-and SV-scattered waves have different wave speeds and together they must have zero normal and shear stresses at the half-space surface. It is not until recently in 2014 that analytic solution for such problem is found by Lee and Liu. This paper uses their technique of defining these stress-free scattered waves, which Brandow and Lee previously used to solve the problem of the scattering and diffraction of these in-plane waves on an almost-circular surface canyon that is arbitrary in shape, to the study of the scattering and diffraction of these in-plane waves on an almost circular arbitrary-shaped alluvial valley.  相似文献   

13.
Scattering of elastic waves by dipping layers of arbitrary shape embedded within an elastic half-space is investigated for a plane strain model by using a boundary method. Unknown scattered waves are expressed in the frequency domain in terms of wave functions which satisfy the equations of motion and appropriate radiation conditions at infinity. The steady state displacement field is evaluated throughout the elastic medium for different incident waves so that the continuity conditions along the interfaces between the layers and the traction-free conditions along the surface of the half-space are satisfied in the least-squares sense. Transient response is constructed from the steady state one through the Fourier synthesis. The results presented show that scattering of waves by dipping layers may cause locally very large amplification of surface ground motion. This amplification depends upon the type and frequency of the incident wave, impedance contrast between the layers, component of displacement which is being observed, location of the observation station and the geometry of the subsurface irregularity. These results are in agreement with recent experimental observations.  相似文献   

14.
Scattering and Diffraction of elastic in-plane P- and SV- waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and strong-motion seismologists for over forty years. The case of out-of-plane SH waves on the same elastic canyon that is semi-circular in shape on the half-space surface is the first such problem that was solved by analytic closed form solutions over forty years ago by Trifunac. The corresponding case of in-plane P- and SV-waves on the same circular canyon is a much more complicated problem because, the in-plane P- and SV- scattered waves have different wave speeds and together they must have zero normal and shear stresses at the half-space surface. It is not until recently in 2014 that analytic solution for such problem is found by the author in the work of Lee and Liu. This paper uses the technique of Lee and Liu of defining these stress-free scattered waves to solve the problem of the scattered and diffraction of these in-plane waves on an almost-circular surface canyon that is arbitrary in shape.  相似文献   

15.
Scattering of elastic waves by three-dimensional canyons embedded within an elastic half-space is investigated by using a wave function expansion technique. The geometry of the canyon is assumed to be non-axisymmetric. The canyon is subjected to incident plane Rayleigh waves and oblique incident SH, SV and P waves. The unknown scattered wavefield is expressed in terms of spherical wave functions which satisfy the equations of motion and radiation conditions at infinity, but they do not satisfy stress-free boundary conditions at the half-space surface. The boundary conditions are imposed locally in the least-squares sense at several points on the surface of the canyon and the half-space. Through a comparative study the validity and limitations of two-dimensional approximations (antiplane strain and plane strain models) have been examined. It is shown that scattering of waves by three-dimensional canyons may cause substantial change in the surface displacement patterns in comparison to the two-dimensional models. These results emphasize the need for three-dimensional modelling of realistic problems of interest in strong ground motion seismology and earthquake engineering.  相似文献   

16.
The three-dimensional scattering by a hemi-spherical canyon in an elastic half-space subjected to seismic plane and spherical waves has long been a challenging boundary-value problem. It has been studied by earthquake engineers and strong-motion seismologists to understand the amplification effects caused by surface topography. The scattered and diffracted waves will, in all cases, consist of both longitudinal (P-) and shear (S-) shear waves. Together, at the half-space surface, these waves are not orthogonal over the infinite plane boundary of the half-space. Thus, to simultaneously satisfy both zero normal and shear stresses on the plane boundary numerical approximation of the geometry and/or wave functions were required, or in some cases, relaxed (disregarded). This paper re-examines this boundary-value problem from the applied mathematics point of view, and aims to redefine the proper form of the orthogonal spherical-wave functions for both the longitudinal and shear waves, so that they can together simultaneously satisfy the zero-stress boundary conditions at the half-space surface. With the zero-stress boundary conditions satisfied at the half-space surface, the most difficult part of the problem will be solved, and the remaining boundary conditions at the finite canyon surface will be easy to satisfy.  相似文献   

17.
This paper presents an indirect boundary integration equation method for diffraction of plane P waves by a two-dimensional canyon of arbitrary shape in poroelastic half-space. The Green's functions of compressional and shear wave sources in poroelastic half-space are derived based on Biot's theory. The scattered waves are constructed using the fictitious wave sources close to the boundary of the canyon, and magnitude of the fictitious wave sources are determined by the boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, the comparison between the degenerated solutions of single-phased half-space and the well-known solutions, and the numerical stability of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号