首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Hofstadter  M. D.  Hartogh  P.  McMullin  J. P.  Martin  R. N.  Jarchow  C.  Peters  W. 《Earth, Moon, and Planets》1997,78(1-3):53-61
We observed submillimeter lines of H2CO and HCN in comet Hale-Bopp near perihelion. One of our goals was to search for short term variability. Our observations are suggestive, but not conclusive, of temporal and/or spatial changes in the coma's HCN/H2CO abundance ratio of ∼25%. If due to spatial variability, the ratio on the sunward side of the coma is enhanced over other regions. If due to temporal variability, we find the bulk ratio in the coma changed in less than 16 hours. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Wink  J.  Bockelée-Morvan  D.  Despois  D.  Colom  P.  Biver  N.  Crovisier  J.  Gérard  E.  Lellouch  E.  Davies  J. K.  Dent  W. R. F.  Jorda  L. 《Earth, Moon, and Planets》1997,78(1-3):63-63
Comet C/1995 O1 (Hale-Bopp) has been observed on October 5 and 25, 1996 and from March 6 to March 22, 1997 with the Institut de Radioastronomie Millimétrique (IRAM) interferometer at Plateau de Bure (France). Millimetre lines of HCN,HNC, CO, H2CO, CH3OH, H2S, CS and SO were mapped with spatial resolutions of 1.5–3.5 arc sec. These observations allow us to investigate whether these species are released by the nucleus or produced in the coma by extended sources or photo-processes. The brightness distribution of the HCN J (1-0) line is consistent with release from the nucleus. The HNC J (1-0) distribution deviates from that of HCN in the innermost coma, and indicates production of HNC in the coma. This is in agreement with the heliocentric variation of the HNC/HCN ratio (Biver et al., 1997, Science 275, 1915; Irvine et al., 1998, this issue) and formation by chemical reactions (Rodgers and Charnley, 1998, Ap. J. 501, L227; Irvine et al., 1998, Nature 393, 547). There is clear evidence that SO is a photo dissociation product. The observations also confirm that H2CO is mainly produced by an extended source, as first evidenced in comet P/Halley. The contribution of the nucleus to the total H2CO production rate does not exceed 6%. The molecular lines have also been monitored hourly with the five antennas of the interferometer in single-dish mode. The line velocity shifts show aperiodic modulation linked to the nucleus rotation. The amplitude of the modulation differs from one species to another. The periodic modulation seen for the CO J (2-1) line on March 11 suggests that a significant fraction of CO is released continuously night and day by an active source situated at equatorial latitudes on the nucleus surface. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The apparition of Comet C/1996 B2 (Hyakutake) offered an unexpected and rare opportunity to probe the inner atmosphere of a comet with high spatial resolution and to investigate with unprecedented sensitivity its chemical composition. We present observations of over 30 submillimeter transitions of HCN, H13CN, HNC, HNCO, CO, CH3OH, and H2CO in Comet Hyakutake carried out between 1996 March 18 and April 9 at the Caltech Submillimeter Observatory. Detections of the H13CN (4–3) and HNCO (160,16–150,15) transitions represent the first observations of these species in a comet. In addition, several other transitions, including HCN (8–7), CO (4–3), and CO (6–5) are detected for the first time in a comet as is the hyperfine structure of the HCN (4–3) line. The observed intensities of the HCN (4–3) hyperfine components indicate a line center optical depth of 0.9 ± 0.2 on March 22.5 UT. The HCN/HNC abundance ratio in Comet Hyakutake at a heliocentric distance of 1 AU is similar to that measured in the Orion extended ridge— a warm, quiescent molecular cloud. The HCN/H13CN abundance ratio implied by our observations is 34 ± 12, similar to that measured in giant molecular clouds in the galactic disk but significantly lower than the Solar System12C/13C ratio. The low HCN/H13CN abundance ratio may be in part due to contamination by an SO2line blended with the H13CN (4–3) line. In addition, chemical models suggest that the HCN/H13CN ratio can be affected by fractionation during the collapse phase of the protosolar nebula; hence a low HCN/H13CN ratio observed in a comet is not inconsistent with the solar system12C/13C isotopic ratio. The abundance of HNCO relative to water derived from our observations is (7 ± 3) × 10−4. The HCN/HNCO abundance ratio is similar to that measured in the core of Sagittarius B2 molecular cloud. Although a photo-dissociative channel of HNCO leads to CO, the CO produced by HNCO is a negligible component of cometary atmospheres. Production rates of HCN, CO, H2CO, and CH3OH are presented. Inferred molecular abundances relative to water are typical of those measured in comets at 1 AU from the Sun. The exception is CO, for which we derive a large relative abundance of 30%. The evolution of the HCN production rate between March 20 and March 30 suggests that the increased activity of the comet was the cause of the fragmentation of the nucleus. The time evolution of the H2CO emission suggests production of this species from dust grains.  相似文献   

4.
T.Y Brooke  H.A Weaver  G Chin  S.J Kim 《Icarus》2003,166(1):167-187
High resolution infrared spectra of Comet C/1995 O1 (Hale-Bopp) were obtained during 2-5 March 1997 UT from the NASA Infrared Telescope Facility on Mauna Kea, Hawaii, when the comet was at r≈1.0 AU from the Sun pre-perihelion. Emission lines of CH4, C2H6, HCN, C2H2, CH3OH, H2O, CO, and OH were detected. The rotational temperature of CH4 in the inner coma was Trot=110±20 K. Spatial profiles of CH4, C2H6, and H2O were consistent with release solely from the nucleus. The centroid of the CO emission was offset from that of the dust continuum and H2O. Spatial profiles of the CO lines were much broader than those of the other molecules and asymmetric. We estimate the CO production rate using a simplified outflow model: constant, symmetric outflow from the peak position. A model of the excitation of CO that includes optical depth effects using an escape probability method is presented. Optical depth effects are not sufficient to explain the broad spatial extent. Using a parent+extended-source model, the broad extent of the CO lines can be explained by CO being produced mostly (∼90% on 5 March) from an extended source in the coma. The CO rotational temperature was near 100 K. Abundances relative to H2O (in percent) were 1.1±0.3 (CH4), 0.39±0.10 (C2H6), 0.18±0.04 (HCN), 0.17±0.04 (C2H2), 1.7±0.5 (CH3OH), and 37-41 (CO, parent+extended source). These are roughly comparable to those obtained for other long-period comets also observed in the infrared, though CO appears to vary.  相似文献   

5.
We present a comparative study on molecular abundances in comets basedon millimetre/submillimetre observations made with the IRAM 30-m,JCMT, CSO and SEST telescopes. This study concerns a sample of 24comets (6 Jupiter-family, 3 Halley-family, 15 long-period) observedfrom 1986 to 2001 and 8 molecular species (HCN, HNC, CH3CN,CH3OH, H2CO, CO, CS, H2S). HCN was detected in all comets,while at least 2 molecules were detected in 19 comets. From the sub-sample of comets for which contemporary H2O productionrates are available, we infer that the HCN abundance relative to water variesfrom 0.08% to 0.25%. With respect to other species, HCN is the moleculewhich exhibits the lowest abundance variation from comet to comet. Therefore,production rates relative to that of HCN can be used for a comparative study ofmolecular abundances in the 19 comets. It is found that: CH3OH/HCN varies from ≤ 9 to 64; CO/HCN varies from ≤ 24 to 180; H2CO/HCN varies between 1.6 and 10; and H2S/HCN varies between 1.5 and 7.6. This study does not show any clear correlation between the relative abundancesand the dynamical origins of the comets, or their dust-to-gas ratios.  相似文献   

6.
Weaver  H. A.  Brooke  T. Y.  Chin  G.  Kim  S. J.  Bockelée-Morvan  D.  Davies  J. K. 《Earth, Moon, and Planets》1997,78(1-3):71-80
High resolution (λ/δλ ∼ 20,000) spectra of comet C/1995 O1 (Hale-Bopp) in the 2–5 μm region were obtained during UT 2–5 March 1997 using CSHELL at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea. The heliocentric and geocentric distances of the comet were ∼1.1 AU and ∼1.5 AU,respectively. We detected emission lines of the gas-phase molecules H2O, 4, C2H6, C2H2, HCN, and CO and derived absolute production rates and relative abundances for all species. We also used the 2-dimensional nature of the CSHELL data to investigate the spatial distribution of the molecules and find evidence that CO was derived at least partly from an extended source in the coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
A. Bar-Nun  M. Podolak 《Icarus》1985,64(1):112-124
The lightning energy dissipation rate on Jupiter from Voyager's observation is used, together with shock-tube experimental results and reasonable eddy diffusion coefficients for the various atmospheric layers, to compute the column abundances of lightning-produced CO, C2H2, and HCN. Shock-tube experiments on the hydrogenation of CO clearly rule out chemical “freezing” of CO at the 1064°K and 400-bar level and its subsequent upwelling to the upper atmosphere. Also, lightning in the water cloud cannot produce enough CO to meet its observed abundance. Hence, the CO is formed from an external source of oxygen or water. The production of acetylene both by lightning above the water cloud and by startospheric methane photolysis is required to maintain its observed abundance against destruction processes. This explains the decrease in the C2H2/C2H6 ratio from the equator to the pole, as observed in the IR. HCN production by lightning above the water cloud is sufficient to account for its observed abundance and meets the observational requirement of a tropospheric HCN source.  相似文献   

8.
Womack  M.  Homich  A.  Festou  M. C.  Mangum  J.  Uhl  W. T.  Stern  S. A. 《Earth, Moon, and Planets》1997,77(3):259-264
On-the-Fly maps of emission from the HCO+ J = 3-2 transition at 267.6 GHz were obtained of C/1995 O1 (Hale-Bopp) on 1997 Mar 15.6 UT using the NRAO 12-m telescope with high spatial resolution. Unlike the relatively symmetric and centralized maps of the neutral species CO, HCN and H2CO, the spatial extent of HCO+ emission is very diffuse with a complex structure characterized by at least two physically different regions. The bulk of the HCO+ emission peaks in intensity ∼175,000 km anti-sunward from the nuclear position. This peak emission does not fall directly along the anti-sunward direction, but is rotated by ∼10 degrees toward the east from the anti-sunward direction. A substantial void, or decrease, of HCO+ emission is observed within ∼ 55,000 km of the nucleus. The HCO+ emission in this void is roughly half the intensity of the emission observed 100,000 km away. This decrease of HCO+ emission near the nucleus may indicate that production or excitation of HCO+ is inhibited, or perhaps that HCO+ is easily destroyed in the inner coma, especially within ∼50,000 km of the nucleus. This void roughly coincides with the approximate location and size of the so-called “diamagnetic cavity” in the coma and may mark a significant transition region in the inner coma of Hale-Bopp This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Biver  N.  Bockelée-Morvan  D.  Colom  P.  Crovisier  J.  Germain  B.  Lellouch  E.  Davies  J. K.  Dent  W. R. F.  Moreno  R.  Paubert  G.  Wink  J.  Despois  D.  Lis  D. C.  Mehringer  D.  Benford  D.  Gardner  M.  Phillips  T. G.  Gunnarsson  M.  Rickman  H.  Winnberg  A.  Bergman  P.  Johansson  L. E. B.  Rauer  H. 《Earth, Moon, and Planets》1997,78(1-3):5-11
C/1995 O1 (Hale-Bopp) has been observed on a regular basis since August 1995 at millimetre and submillimetre wavelengths using IRAM, JCMT, CSO and SEST radio telescopes. The production rates of eight molecular species (CO, HCN, CH3OH, H2CO,H2S, CS, CH3CN,HNC) have been monitored as a function of heliocentric distance(rh from 7 AU pre-perihelion to 4 AU post-perihelion. As comet Hale-Bopp approached and receded from the Sun, these species displayed different behaviours. Far from the Sun, the most volatile species were found in general relatively more abundant in the coma. In comparison to other species, HNC, H2CO and CS showed a much steeper increase of the production rate with decreasing rh. Less than 1.5 AU from the Sun, the relative abundances were fairly stable and approached those found in other comets near 1 AU. The kinetic temperature of the coma, estimated from the relative intensities of the CH3OH and CO lines, increased with decreasing rh, from about10 K at 7 AU to 110 K around perihelion. The expansion velocity of the gaseous species, derived from the line shapes, also increased with a law close torh 3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
M.H. Moore  R.L. Hudson 《Icarus》2003,161(2):486-500
Infrared spectra and radiation chemical behavior of N2-dominated ices relevant to the surfaces of Triton and Pluto are presented. This is the first systematic IR study of proton-irradiated N2-rich ices containing CH4 and CO. Experiments at 12 K show that HCN, HNC, and diazomethane (CH2N2) form in the solid phase, along with several radicals. NH3 is also identified in irradiated N2 + CH4 and N2 + CH4 + CO. We show that HCN and HNC are made in irradiated binary ice mixtures having initial N2/CH4 ratios from 100 to 4, and in three-component mixtures have an initial N2/(CH4 + CO) ratio of 50. HCN and HNC are not detected in N2-dominated ices when CH4 is replaced with C2H6, C2H2, or CH3OH.The intrinsic band strengths of HCN and HNC are measured and used to calculate G(HCN) and G(HNC) in irradiated N2 + CH4 and N2 + CH4 + CO ices. In addition, the HNC/HCN ratio is calculated to be ∼1 in both icy mixtures. These radiolysis results reveal, for the first time, solid-phase synthesis of both HCN and HNC in N2-rich ices containing CH4.We examine the evolution of spectral features due to acid-base reactions (acids such as HCN, HNC, and HNCO and a base, NH3) triggered by warming irradiated ices from 12 K to 30-35 K. We identify anions (OCN, CN, and N3−) in ices warmed to 35 K. These ions are expected to form and survive on the surfaces of Triton and Pluto. Our results have astrobiological implications since many of these products (HCN, HNC, HNCO, NH3, NH4OCN, and NH4CN) are involved in the syntheses of biomolecules such as amino acids and polypeptides.  相似文献   

11.
《Planetary and Space Science》2007,55(9):1050-1057
The ESA Rosetta Spacecraft, launched on March 2, 2004 with the ultimate destination being Comet 67P/Churyumov–Gerasimenko, carries a relatively small and lightweight millimeter–submillimeter spectrometer instrument, the first of its kind launched into deep space. The instrument, named Microwave Instrument for the Rosetta Orbiter (MIRO), consists of a 30-cm diameter, offset parabolic reflector telescope, which couples energy in the millimeter and submillimeter bands to two heterodyne receivers. Center-band operating frequencies are near 190 GHz (1.6 mm) and 562 GHz (0.5 mm). Broadband, total power continuum measurements can be made in both bands. A 4096-channel spectrometer with 44 kHz resolution is connected to the submillimeter receiver. The spectral resolution is sufficient to observe individual, thermally broadened spectral lines (T⩾10 K). The submillimeter radiometer/spectrometer is fixed tuned to measure four volatile species—CO, CH3OH, NH3 and three isotopes of water, H216O, H217O and H218O. The MIRO experiment will use these species as probes of the physical conditions within the nucleus and coma. The basic quantities measured by MIRO are surface temperature, gas production rates and relative abundances, and velocity and excitation temperature of each species, along with their spatial and temporal variability. This information will be used to infer coma structure and outgassing processes, including the nature of the nucleus/coma interface.  相似文献   

12.
C/2006 P1 McNaught is a dynamically new comet from the Oort cloud that passed very close to the Sun, driving overall volatile production rates up to about 1031 molecules s−1. Post-perihelion observations were obtained in a target-of-opportunity campaign using the CSHELL instrument at the NASA Infrared Telescope Facility atop Mauna Kea, Hawaii, on UT 2007 January 27 and 28. Eight parent volatiles (H2O, CH4, C2H2, C2H6, HCN, CO, NH3, H2CO) and two daughter fragments (OH and NH2) were detected, enabling the determination of a rotational temperature and production rate for H2O on UT January 27 and absolute and relative production rates for all the detected parent species on UT January 28. The chemical composition measured in the coma suggests that this close perihelion passage stripped off processed outer surface layers, likely exposing relatively fresh primordial material during these observations. The post-perihelion abundances we measure for CO and CH4 (relative to H2O) are slightly depleted while C2H2, NH2 and possibly NH3 are enhanced when compared to the overall comet population. Measured abundances for other detected molecular species were within the range typically observed in comets.  相似文献   

13.
We measured the chemical composition of Comet C/2007 W1 (Boattini) using the long-slit echelle grating spectrograph at Keck-2 (NIRSPEC) on 2008 July 9 and 10. We sampled 11 volatile species (H2O, OH, C2H6, CH3OH, H2CO, CH4, HCN, C2H2, NH3, NH2, and CO), and retrieved three important cosmogonic indicators: the ortho-para ratios of H2O and CH4, and an upper-limit for the D/H ratio in water. The abundance ratios of almost all trace volatiles (relative to water) are among the highest ever observed in a comet. The comet also revealed a complex outgassing pattern, with some volatiles (the polar species H2O and CH3OH) presenting very asymmetric spatial profiles (extended in the anti-sunward hemisphere), while others (e.g., C2H6 and HCN) showed particularly symmetric profiles. We present emission profiles measured along the Sun-comet line for all observed volatiles, and discuss different production scenarios needed to explain them. We interpret the emission profiles in terms of release from two distinct moieties of ice, the first being clumps of mixed ice and dust released from the nucleus into the sunward hemisphere. The second moiety considered is very small grains of nearly pure polar ice (water and methanol, without dark material or apolar volatiles). Such grains would sublimate only very slowly, and could be swept into the anti-sunward hemisphere by radiation pressure and solar-actuated non-gravitational jet forces, thus providing an extended source in the anti-sunward hemisphere.  相似文献   

14.
Volatile organic emissions were detected post-perihelion in the long-period Comet C/2006 M4 (SWAN) in October and November 2006. Our study combines target-of-opportunity infrared observations using the Cryogenic Echelle Spectrometer (CSHELL) at the NASA-IRTF 3-m telescope, and millimeter wavelength observations using the Arizona Radio Observatory (ARO) 12-m telescope. Five parent volatiles were measured with CSHELL (H2O, CO, CH3OH, CH4, and C2H6), and two additional species (HCN and CS) were measured with the ARO 12-m. These revealed highly depleted CO and somewhat enriched CH3OH compared with abundances observed in the dominant group of long-period (Oort cloud) comets in our sample and similar to those observed recently in Comet 8P/Tuttle. This may indicate highly efficient H-atom addition to CO at very low temperature (∼10-20 K) on the surfaces of interstellar (pre-cometary) grains. Comet C/2006 M4 had nearly “normal” C2H6 and CH4, suggesting a processing history similar to that experienced by the dominant group. When compared with estimated water production at the time of the millimeter observations, HCN was slightly depleted compared with the normal abundance in comets based on IR observations but was consistent with the majority of values from the millimeter. The ratio CS/HCN in C/2006 M4 was within the range measured in ten comets at millimeter wavelengths. The higher apparent H-atom conversion efficiency compared with most comets may indicate that the icy grains incorporated into C/2006 M4 were exposed to higher H-atom densities, or alternatively to similar densities but for a longer period of time.  相似文献   

15.
Radio spectroscopic observations of Comet 19P/Borrelly were performed during the 1994 apparition and at, and near, the time of the Deep Space 1 flyby in 2001. HCN, CS, CH3OH, and H2CO were detected using the 30-m telescope of the Institut de Radioastronomie Millimétrique and the James Clerk Maxwell Telescope, and their production rates relative to water are estimated to be 0.06-0.11, 0.07, 1.7, and 0.4%, respectively. Only upper limits are derived for H2S and CO. The upper limit for CO/H2O (<15%) is not very constraining, while the upper limit for the H2S/H2O ratio of 0.45% is near the bottom of the range of values measured for other comets. Observations of the OH radical at the Nançay radio telescope provide water production rates a few weeks before the 1994 and 2001 perihelia. Observations of the 110-101 water line at 557 GHz with the Odin satellite yield a water production rate of (2.5±0.5)×1028 s−1 on September 22, 2001, at the time of the Deep Space 1 encounter, and (3.3±0.6)×1028 s−1 averaged over the September 22-24, 2001 period. The line shapes are asymmetric and blueshifted by V0∼−0.18 km s−1 for the best observed HCN lines recorded one week after perihelion. The HCN line shapes, and the similar OH and HCN velocity shifts over the September-November 1994 and August-September 2001 periods, favor anisotropic outgassing towards the Sun. Strong outgassing directed along the primary dust jet seen on visible images is not excluded by the HCN line shapes, but unrealistically high gas expansion velocities are required to explain the line shapes in that case.  相似文献   

16.
The bright comet Hale–Bopp provided the first opportunity to follow the outgassing rates of a number of molecular species over a large range of heliocentric distances. We present the results of our observing campaign at radio wavelengths which began in August 1995 and ended in January 2002. The observations were carried out with the telescopes of Nançay, IRAM, JCMT, CSO and, since September 1997, SEST. The lines of nine molecules (OH, CO, HCN, CH3OH, H2CO, H2S, CS, CH3CN and HNC) were monitored. CS, H2S, H2CO, CH3CN were detected up to rh= 3–4 AU from the Sun, while HCN and CH3OH were detected up to 6 AU. CO, which is the main driver of cometary activity at heliocentric distances larger than 3–4 AU, was last detected in August 2001, at rh= 14 AU. The gas production rates obtained from this programme contain important information on the nature of cometary ices, their thermal properties and sublimation mechanisms.Line shapes allow to measure gas expansion velocities, which, at large heliocentric distances, might be directly connected to the temperature of the nucleus surface. Inferred expansion velocity of the gas varied as rh -0.4 within 7 AU from the Sun, but remained close to 0.4 km s-1 further away. The CO spectra obtained at large rhare strongly blueshifted and indicative of an important day-to-night asymmetry in outgassing and expansion velocity. The kinetic temperature of the coma, estimated from the relative intensities of the CH3OH and CO lines, increased with decreasing rh, from about 10 K at 7 AU to 110 K around perihelion.  相似文献   

17.
The Deep Impact encounter with the Jupiter family Comet 9P/Tempel 1 on UT 2005 July 4 was observed at high spectral resolving power (λ/δλ∼25,000) using the cross-dispersed near-infrared echelle spectrometer (NIRSPEC) at Keck-2. We report the temporal evolution of parent volatiles and dust (simultaneously measured) resulting from the event. Column abundances are presented for H2O and C2H6 beginning 30 min prior to impact (T−30) and ending 50 min following impact (T+50), and for H2O and HCN from T+50 until T+96, in time steps of approximately 6 min post-impact. The ejecta composition was revealed by an abrupt increase in H2O and C2H6 near T+25. This showed C2H6/H2O to be higher than its pre-impact value by a factor 2.4±0.5, while HCN/H2O was unchanged within the uncertainty of the measurements. The mixing ratios for C2H6 and HCN in the ejecta agree with those found in the majority of Oort cloud comets, perhaps indicating a common region of formation. The expanding dust plume was tracked by continuum measurements, both through the 3.5-μm spectral continuum and through 2-μm images acquired with the SCAM slit-viewing camera, and each showed a monotonic increase in continuum intensity following impact. A Monte Carlo model that included dust opacity was applied to the dust coma, and its parameters were constrained by observations; the simulated continuum intensities reproduced both spectral and SCAM data. The relatively sudden appearance of the volatile ejecta signature is attributed to heating of icy grains (perhaps to a threshold temperature) that are decreasingly shadowed by intervening (sunward) dust particles in an optically thick ejecta plume, perhaps coupled with an accelerated decrease in dust optical depth near T+25.  相似文献   

18.
Using a normalized perturbative, semi-classical approach, collision-induced rotational excitation rates of CO, OCS, SiO, HCN, HC3N due to H2 are computed. The calculated excitation rates for CO–H2 and OCS–H2 systems at 100 K are in good agreement with the results of close coupling approximation at low values ofJ, whereJ is the rotational quantum number. The rates are found to be very sensitive with respect to ortho and para states of H2.  相似文献   

19.
We used the NIRSPEC instrument on the Keck-2 telescope atop Mauna Kea, HI to observe Comet C/2001 A2 (LINEAR) in a Target of Opportunity campaign on UT 2001 July 9.5, 10.5 August 4.4, 10.5. We measured seven organic parent volatiles (C2H6, C2H2, HCN, CH4, CO, CH3OH, H2CO) simultaneously with H2O. We obtained absolute production rates and relative abundances for parent volatiles, and also measured rotational temperatures for several of these species. The chemical composition of C/2001 A2 differs substantially from any comet we have observed to date. The abundances we measure (relative to H2O) for C2H6, C2H2, HCN, and CH3OH are enriched by a factor of ∼2 to 3 in C/2001 A2 compared with most comets in our database. Other molecular species were detected within the typical range of measured abundances. C/2001 A2 presented a unique opportunity to study the chemistry of a fragmenting comet where pristine areas are exposed to the Sun.  相似文献   

20.
Comet 73P-B/Schwassmann-Wachmann 3 was observed with IRCS/Subaru at geocentric distance of 0.074 AU on UT 10 May 2006. Multiple H2O emission lines were detected in non-resonant fluorescence near 2.9 μm. No significant variation in total H2O production rate was found during the (3 h) duration of our observations. H2O rotational temperatures and ortho-to-para abundance ratios were measured for several positions in the coma. The temperatures extracted from two different time intervals show very similar spatial distributions. For both, the rotational temperature decreased from ∼110 to ∼90 K as the projected distance from the nucleus increased from ∼5 to ∼30 km. We see no evidence for OPR change in the coma. The H2O ortho-para ratio is consistent with the statistical equilibrium value (3.0) for all spatially resolved measurements. This implies a nuclear spin temperature higher than ∼45 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号