首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Matched-field inversion is used to, estimate geoacoustic properties from data obtained in an experiment with a vertical line array (VLA). The experiment was carried out using broad-band sources (shots) in water depths of about 200 m on the continental shelf off Vancouver Island. The data were processed to obtain spectral components of the field for frequencies near the bubble frequency for the shot. The ocean bottom in this region consists of a layer of mainly sandy sediments (about 100 m thick) overlying older consolidated material. Consequently, the inversion was designed to estimate the parameters of a two-layer elastic sediment model. In the inversion, an adaptive global search algorithm was used to investigate the multidimensional space of geoacoustic models in order to determine the set of values corresponding to the best replica field. Convergence is driven by adaptively guiding the search to regions of the parameter space associated with above-average values of the matched field correlation between the measured and replica fields. The geoacoustic profile estimated by the inversion consisted of a 125-m layer with compressional speed ~1700 m/s and shear speed ~400 m/s, overlying a layer with compressional speed ~1900 m/s. This model is consistent with the results from conventional seismic experiments carried out in the same region  相似文献   

2.
This paper describes results from an experiment carried out to investigate geoacoustic inversion with a bottom-moored hydrophone array located in the shallow waters of the Timor Sea off the northern coast of Australia. The array consisted of two arms in a V shape, horizontally moored at a site that was essentially flat over a large area. Hydrophone positions were estimated using an array element localization (AEL) technique that established relative uncertainties of less than 1 m on the seafloor. The data used for geoacoustic inversion were from experiments with continuous wave (CW) tones in the 80- to 195-Hz band transmitted from a towed projector. A hybrid search algorithm determined the set of geoacoustic model parameters that maximized the Bartlett fit (averaged coherently spatially at each tone and incoherently over frequency) between the measured and modeled data at the array. Due to the long range experimental geometry, the inversion was sensitive to attenuation in the sediment. The inverted geoacoustic profile performed well in a simple test for localizing the sound source at other sites in the vicinity of the array. Range-depth localization performance for the horizontal array was comparable to that for an equivalent vertical array.  相似文献   

3.
This paper examines geoacoustic inversion over a range-dependent multiple-layer seabed using a towed acoustic source and towed horizontal array. The approach is based on combining the results of a series of short-range, range-independent inversions to form a range-dependent representation of the environment. The data were collected in the Strait of Sicily during the MAPEX 2000 experiment. Issues such as the resolvability of multilayer structure and the sensitivity of various geoacoustic parameters are investigated by inversion of simulated data and by comparison of the MAPEX 2000 inversion results to a high-resolution seismic profile and to sediment core measurements. It appears that two, and in some cases possibly three, sediment layers can be resolved.  相似文献   

4.
This work presents the results of geoacoustic inversions carried out using data from the Asian Seas International Acoustics Experiment East China Sea. Broadband data from small explosive sources were used for the inversions. Compressional wave speeds in the sediment and basement layers were estimated using a nonlinear, long-range, tomographic inversion technique based on group speed dispersion. This tomographic technique is a hybrid approach that combines a genetic algorithm for global parameter search with a Levenberg-Marquardt method for fine-scale parameter tuning. The results were compared with data from gravity and piston cores and a geophysical survey conducted at the experimental location using a watergun and towed hydrophone array.  相似文献   

5.
Acoustic propagation in shallow water is greatly dependent on the geoacoustic properties of the seabottom. This paper exploits this dependence for estimating geoacoustic sediment properties from the bottom acoustic returns of known signals received on a hydrophone line array. There are two major issues in this approach: one is the feasibility of acoustic inversion with a limited aperture line array, the other is related to the knowledge of the geometry of the experimental configuration. To test the feasibility of this approach, a 40-hydrophone-4-m spaced towed array together with a low-frequency acoustic source, was operated at a shallow water site in the Strait of Sicily. In order to estimate the array deformation in real time, it has been equipped with a set of nonacoustic positioning sensors (compasses, tilt-meters, pressure gauges). The acoustic data were inverted using two complementary approaches: a genetic algorithm (GA) like approach and a radial basis functions (RBF) inversion scheme. More traditional methods, based on core sampling, seismic survey and geophone data, together with Hamilton's regression curves, have also been employed on the same tracks, in order to provide a ground truth reference environment. The results of the experiment, can be summarized as follows: 1) the towed array movement is not negligible for the application considered and the use of positioning sensors are essential for a proper acoustic inversion, 2) the inversion with GA and RBF are in good qualitative agreement with the ground truth model, and 3) the GA scheme tends to have better stability properties. On the other hand, repeated in version of successive field measurements requires much less computational effort with RBF  相似文献   

6.
7.
A common problem in sonar system prediction is that the ocean environment is not well known. Utilizing probabilistic based results from geoacoustic inversions we characterize parameters relevant to sonar performance. This paper describes the estimation of transmission loss and its statistical properties based on posterior parameter probabilities obtained from inversion of ocean acoustic array data. This problem is solved by first finding an ensemble of relevant environmental model parameters and the associated posterior probability using a likelihood based inversion of the acoustic array data. In a second step, each realization of these model parameters is weighted with their posterior probability to map into the transmission loss domain. This approach is illustrated using vertical-array data from a recent benchmark data set and from data acquired during the Asian Seas International Acoustics Experiment (ASIAEX) 2001 in the East China Sea. The environmental parameters are first estimated using a probabilistic-based geoacoustic inversion technique. Based on the posterior probability that each of these environmental models fits the ocean acoustic array data, each model is mapped into transmission loss. This enables us to compute a full probability distribution for the transmission loss at selected frequencies, ranges, and depths, which potentially could be used for sonar performance prediction.  相似文献   

8.
Most of the research on model-based geoacoustic inversion techniques has concentrated on data collected using moored vertical receiver arrays. However, there are many advantages to considering geoacoustic inversion using a towed horizontal array. Towed arrays are easily deployed from a moving platform; this mobility makes them well suited for surveying large areas for sea-bed properties. Further, if a model-based geoacoustic inversion scheme uses both a towed source and array, the separation between the two can be kept short, which reduces the requirement for range-dependent modeling. Range-independent modeling is used for inverting all the horizontal array data considered in this paper. Using the Inversion Techniques Workshop Benchmark Test Cases, the performance of a horizontal (simulated towed) and vertical arrays are compared and found to be very similar. However, it will be shown that, for Benchmark Test Case 3, where the bathymetry is flat and a hidden bottom intrusion exists, a towed horizontal array is ideal for determining the range-dependent sea-bed properties. The practical advantages of using a towed array are clear and the purpose of this paper is to show that the performance is similar (and in some cases better) than using moored vertical arrays.  相似文献   

9.
As a part of the Asian Seas International Acoustic Experiment (ASIAEX) in the East China Sea, sound propagation signals from wideband explosive sources were measured using a 32-element vertical line array. Measurements were made as a function of range in two perpendicular tracks. Sea-bed geoacoustic parameters based on a fluid half-space geoacoustic model (sound speed, density, and attenuation) are inverted from the sound propagation in the frequency range 100-500 Hz. The sea-bed sound speed and density were first derived from mode arrival time differences which were obtained using a spatial mode filtering technique. Sea-bed acoustic attenuation was subsequently estimated by comparing measured transmission loss with model results.  相似文献   

10.
This paper examines the effectiveness of horizontal line arrays (HLAs) for matched-field inversion (MFI) by quantifying geoacoustic information content for a variety of experiment and array factors, including array length and number of sensors, source range and bearing, source-frequency content, and signal-to-noise ratio (SNR). Emphasis is on bottom-moored arrays, while towed arrays are also considered, and a comparison with vertical line array (VLA) performance is made. The geoacoustic information content is quantified in terms of marginal posterior probability distributions (PPDs) for model parameters estimated using a fast Gibbs sampler approach to Bayesian inversion. This produces an absolute, quantitative estimate of the geoacoustic parameter uncertainties which can be directly compared for various experiment and array factors.  相似文献   

11.
The self-starter is improved using the operator of the split-step Pade solution. In addition to providing greater stability and being applicable closer to the source, the improved self-starter is an efficient forward model for geoacoustic inversion. It is necessary to solve only O(10) tridiagonal systems of equations to obtain the acoustic field on a vertical array located O(10) wavelengths from a source. This experimental configuration is effective for geoacoustic inverse problems involving unknown parameters deep in the ocean bottom. For problems involving depth-dependent acoustic parameters, the improved self-starter can be used to solve nonlinear inverse problems involving O(10) unknown sediment parameters in less than a minute on the current generation of workstations  相似文献   

12.
The paper discusses an inversion method that allows the rapid determination of in situ geoacoustic properties of the ocean bottom without resorting to large acoustic receiving apertures, synthetic or real. The method is based on broad-band waterborne measurements and modeling of the waveguide impulse response between a controlled source and a single hydrophone. Results from Yellow Shark '94 experiments in Mediterranean shallow waters using single elements of a vertical array are reviewed, inversion of the bottom parameters is performed with an objective function that includes the processing gain of a model-based matched filter (MBMF) receiver relative to the conventional matched filter. The MBMF reference signals incorporate waveguide Green's functions for known geometry and water column acoustic model and hypothesized bottom geoacoustic models. The experimental inversion results demonstrated that, even for complex environmental conditions, a single transmission of a broad-band (200-800 Hz) coded signal received at a single depth and a few hundred forward modeling runs were sufficient to correctly resolve the bottom features. These included the sound speed profile, attenuation, density, and thickness of the top clay sediment layer, and sound speed and attenuation of the silty clay bottom. Exhaustive parameter search proved unequivocally the low-ambiguity and high-resolution properties of the MBMF-derived objective. The single-hydrophone results compare well with those obtained under identical conditions from matched-field processing of multitone pressure fields sampled on the vertical array. Both of these results agree with expectations from geophysical ground truth. The MBMF has been applied successfully to a field of advanced drifting acoustic buoys on the Western Sicilian shelf, demonstrating the general applicability of the inversion method presented  相似文献   

13.
Model-based geoacoustic inversion in range-dependent underwater environments is a challenging task constrained by data quality (synthetic or measured) and propagation-model efficiency and accuracy. The Inversion Techniques Workshop (ITW), held in Gulfport, MS, May 15-18, 2001, was organized for the acoustics community to present state-of-the-art numerical geoacoustic inversion capabilities in range-dependent shallow-water environments. The organizers defined five range-dependent test cases (three synthetic and two experimental cases). Two of the synthetic cases were adopted for geoacoustic inversion in this paper. The first test case (TC1) is a monotonic down-slope bathymetry problem and the adiabatic normal-mode model PROSIM was applied for the inversion in this case. The second test case (TC3) is a flat-bottom case with an intrusion. The forward model used in this case was RAMGEO. The global optimization package SAGA was used for geoacoustic inversion of the synthetically generated reference solutions for TC1 and TC3. In general, the geoacoustic inversion results are in good agreement with the true solutions provided by the organizers. The results obtained demonstrate the feasibility of performing geoacoustic inversion in synthetic range-dependent shallow-water environments. However, results show that the propagation model choice in the inversion is strongly dependent on the specific range-dependent environment.  相似文献   

14.
Over the past decade, inversion methods have been developed and applied to acoustic field data to provide information about unknown ocean-bottom environments. An effective inversion must provide both an estimate of the bottom parameters and a measure of the uncertainty of the estimated values. This paper summarizes results from the Office of Naval Research (ONR)/Space and Naval Warfare Systems Command (SPAWAR) Geoacoustic Inversion Techniques Workshop, test cases 4 and 5. The workshop was held to benchmark present-day inversion methods for estimating geoacoustic profiles in shallow water. The format of the workshop was a blind test to estimate unknown geoacoustic profiles by inversion of measured acoustic transmission loss data in octave bands and reverberation envelopes. The data sets for test cases 4 and 5 were taken at two locations in shallow water, one in the East China Sea and the other along the southwest coast of Florida. The limitations of the data and the limits to the knowledge of the sites are discussed. In both cases, impulsive sources were used in conjunction with air-deployed sonobuoys. Since the measured data was incoherent, only methods consistent with total energy matching were applicable. Comparisons between the different inversion techniques presented at the workshop are discussed. For test cases 4 and 5, a precise metric was unavailable for comparison.  相似文献   

15.
In recent years, interface waves such as the Scholte wave have become important tools in the study of the geoacoustic properties of near-bottom seafloor sediments. Traditionally, these waves have been generated by explosive or pneumatic sources deployed at or near the seafloor and monitored by ocean-bottom seismographs or geophone arrays. While these sources generate the requisite interface waves, they also produce higher frequency compressional waves in the water and sediment that tend to contaminate the surface wave and make inversion of the data difficult in the near field. In this paper, a new source consisting of a freely falling projectile instrumented with an accelerometer is described. When the projectile impacts the bottom, the exact time history of the vertical force applied to the sediment is known and therefore may be convolved with the transfer function of a sediment geoacoustic model to produce accurate synthetic seismograms. Moreover, the vertical force applied to the seafloor is very efficient in generating surface wave motion while producing very little compressional wave energy so that the near-field signals are much more easily analyzed. An example of the use of the new source is presented including inversion of the received signals to obtain shear-wave velocity and attenuation as a function of depth in the near bottom sediments at a shallow-water site  相似文献   

16.
Sonar performance predictions in shallow water are strongly dependent on good knowledge of the geoacoustic and scattering properties of the seabed. One technique to extract information about the bottom is to use a towed source and a towed horizontal array. This towed system has been shown to be applicable for characterizing the bottom properties locally by inversion of the acoustic signals received directly on the towed array at short ranges. The same towed system has also been applied to extract bottom properties from long-range reverberation data providing effective bottom properties over a large area. However, independent geoacoustic inversion of the short-range propagation and long-range reverberation data can introduce low sensitivity and uncertainty in the extracted bottom properties. An attempt to resolve this low sensitivity and ambiguity is made by a simultaneous geoacoustic inversion of short-range propagation and long-range reverberation data with the intention of constraining the possible solutions of the bottom properties.   相似文献   

17.
This paper applies nonlinear Bayesian inversion to seabed reflection data to estimate viscoelastic parameters of the upper sediments. The inversion provides maximum a posteriori probability (MAP) parameter estimates with uncertainties quantified in terms of marginal probability distributions, variances, and credibility intervals; interparameter relationships are quantified by correlations and joint marginal distributions. The inversion is applied to high-resolution reflectivity data from two sites in the Strait of Sicily. One site is characterized by low-speed sediments, resulting in data with a well-defined angle of intromission; the second is characterized by high-speed sediments, resulting in a critical angle. Data uncertainties are quantified using several approaches, including maximum-likelihood (ML) estimation, treating uncertainties as nuisance parameters in the inversion, and analysis of experimental errors. Statistical tests are applied to the data residuals to validate the assumed uncertainty distributions. Excellent results (i.e., small uncertainties) are obtained for sediment compressional-wave speed, compressional attenuation, and density; shear parameters are less well determined although low shear-wave speeds are indicated. The Bayesian analysis provides a quantitative comparison of inversion results for the two sites in terms of the resolution of specific geoacoustic parameters, and indicates that the geoacoustic information content is significantly higher for intromission data  相似文献   

18.
Reverberation measurements made by the SACLANT Undersea Research Centre at three shallow-water sites (130-190-m depth) are compared with each other and with estimates from the DREA normal-mode reverberation model OGOPOGO. The experiments over silt-clay and sand seabeds were conducted at slightly bistatic geometries (0.7-6.0-km source-receiver separation), using explosive sources detonated at mid-water depths. The signals were received on hydrophones of either a vertical or horizontal array and analyzed in one-tenth-decade frequency bands from 25 to 1000 Hz. The data are compared with each other to investigate the site differences and frequency dependencies, and with the estimates from the reverberation model OGOPOGO to interpret the data and to obtain a qualitative measure of the scattering. For modeling purposes, geoacoustic models of the seabed were assumed, and the reverberation data were fitted by adjusting the Lambert bottom scattering coefficients. Good model agreement was obtained with both individual hydrophone and data. Though somewhat sensitive to the geoacoustic the Lambert coefficients give a measure of the frequency dependence of the scattering. For the silt-clay bottom, the scattering is weak but is independent of frequency; for the sand bottoms, the scattering is stronger and increases with frequency. These results are compared with estimates from other experiments  相似文献   

19.
The problem of rapid classification of the sea-floor sediment is addressed using horizontal line array (HLA) acoustic data from a passing surface ship. The data are beamformed to improve signal-to-noise ratio. The rapid geoacoustic characterization (RGC) algorithm involves extracting acoustic observables from the data (normalized striation slope, time spread, and transmission-loss slope). A simple single homogenous sediment layer over an acoustic half-space model is used to compute forward estimates of the acoustic observables. An exhaustive search over the two-parameter model is performed. The two parameters searched over are the sediment compressional speed (Cp), which is a polynomial function of the mean grain size (/spl phi/), and sediment thickness (H). This approach provides a real-time technique for classifying the sediment in a way that successfully reproduces the basic physics of propagation.  相似文献   

20.
Optimal array-processing techniques in the ocean often require knowledge of the spatial coherence of the reverberation. A mathematical model is derived for the reverberation vertical coherence (RVC) in shallow water (SW). A method for analysis of RVC data is introduced. Measured reverberation cross-correlation coefficients as a function of time and frequency, obtained during the Asian Seas International Acoustic Experiment (ASIAEX) in the East China Sea, are reported. SW reverberation from a single shot provides a continuous spatial sampling of the surrounding sound field up to several tens of kilometers and holds valuable information on the geoacoustic properties of the sea floor over this distance. SW reverberation data can, therefore, be used as the basis for a quick and inexpensive method for geoacoustic inversion and has the obvious advantage that acquiring the data in situ requires only a single platform. This paper considers the use of the vertical coherence of the reverberation as the starting point for such an inversion. Sound speed and attenuation in the sea bottom at the ASIAEX site are obtained over a frequency range of 100-1500 Hz by finding values that provide the best match between the measured and predicted RVC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号