首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present H2O analyses of MgSiO3 pyroxene crystals quenched from hydrous conditions in the presence of olivine or wadsleyite at 8–13.4 GPa and 1,100–1,400°C. Raman spectroscopy shows that all pyroxenes have low clinoenstatite structure, which we infer to indicate that the crystals were high clinoenstatite (C2/c) during conditions of synthesis. H2O analyses were performed by secondary ion mass spectrometry and confirmed by unpolarized Fourier transform infrared spectroscopy on randomly oriented crystals. Measured H2O concentrations increase with pressure and range from 0.08 wt.% H2O at 8 GPa and 1,300°C up to 0.67 wt.% at 13.4 GPa and 1,300°C. At fixed pressure, H2O storage capacity diminishes with increasing temperature and the magnitude of this effect increases with pressure. This trend, which we attribute to diminishing activity of H2O in coexisting fluids as the proportion of dissolved silicate increases, is opposite to that observed previously at low pressure. We observe clinoenstatite 1.4 GPa below the pressure stability of clinoenstatite under nominally dry conditions. This stabilization of clinoenstatite relative to orthoenstatite under hydrous conditions is likely owing to preferential substitution of H2O into the high clinoenstatite polymorph. At 8–11 GPa and 1,200–1,400°C, observed H2O partitioning between olivine and clinoenstatite gives values of D ol/CEn between 0.65 and 0.87. At 13 GPa and 1,300°C, partitioning between wadsleyite and clinoenstatite, D wd/CEn, gives a value of 2.8 ± 0.4.  相似文献   

2.
Summary The phase relations of K-richterite, KNaCaMg5Si8O22(OH)2, and phlogopite, K3Mg6 Al2Si6O20(OH)2, have been investigated at pressures of 5–15 GPa and temperatures of 1000–1500 °C. K-richterite is stable to about 1450 °C at 9–10 GPa, where the dp/dT-slope of the decomposition curve changes from positive to negative. At 1000 °C the alkali-rich, low-Al amphibole is stable to more than 14 GPa. Phlogopite has a more limited stability range with a maximum thermal stability limit of 1350 °C at 4–5 GPa and a pressure stability limit of 9–10 GPa at 1000 °C. The high-pressure decomposition reactions for both of the phases produce relatively small amounts of highly alkaline water-dominated fluids, in combination with mineral assemblages that are relatively close to the decomposing hydrous phase in bulk composition. In contrast, the incongruent melting of K-richterite and phlogopite in the 1–3 GPa range involves a larger proportion of hydrous silicate melts. The K-richterite breakdown produces high-Ca pyroxene and orthoenstatite or clinoenstatite at all pressures above 4 GPa. At higher pressures additional phases are: wadeite-structured K2SiVISiIV 3O9 at 10 GPa and 1500 °C, wadeite-structured K2SiVISiIV 3O9 and phase X at 15 GPa and 1500 °C, and stishovite at 15 GPa and 1100 °C. The solid breakdown phases of phlogopite are dominated by pyrope and forsterite. At 9–10 GPa and 1100–1400 °C phase X is an additional phase, partly accompanied by clinoenstatite close to the decomposition curve. Phase X has variable composition. In the KCMSH-system (K2CaMg5Si8O22(OH)2) investigated by Inoue et al. (1998) and in the KMASH-system investigated in this report the compositions are approximately K4Mg8Si8O25(OH)2 and K3.7Mg7.4Al0.6Si8.0O25(OH)2, respectively. Observations from natural compositions and from the phlogopite-diopside system indicate that phlogopite-clinopyroxene assemblages are stable along common geothermal gradients (including subduction zones) to 8–9 GPa and are replaced by K-richterite at higher pressures. The stability relations of the pure end member phases of K-richterite and phlogopite are consistent with these observations, suggesting that K-richterite may be stable into the mantle transition zone, at least along colder slab geotherms. The breakdown of moderate proportions of K-richterite in peridotite in the upper part of the transition zone may be accompanied by the formation of the potassic and hydrous phase X. Additional hydrogen released by this breakdown may dissolve in wadsleyite. Therefore, very small amounts of hydrous fluids may be released during such a decomposition. Received April 10, 2000; revised version accepted November 6, 2000  相似文献   

3.
Dense hydrous magnesium silicates (DHMS) are supposed to be key phases in planetary water cycles because of their ability to carry water to deep mantle regions in subduction slab environments. In order to understand water cycles in iron-enriched planetary systems such as Mars knowledge of the water content and stability of iron-bearing DHMS is required. Iron-bearing DHMS were synthesized based on two starting compositions, MgFeSiO4 + 9.5 wt% H2O system and a simple hydrous Martian mantle composition containing Fe, Mg, Al and Si + 12.35 wt% H2O (hydrous FMAS system). Compared to literature data on phase D, iron-bearing phase D shows analogous variations in water contents as Mg-phase D but appears to be stable at higher temperatures than Mg-phase D for both starting compositions used in this study. Iron-bearing superhydrous phase B contains up to 7 wt% H2O and shows an extended thermal stability in the hydrous FMAS system. The high-temperature stability of iron-bearing DHMS with a Mars-like bulk composition indicates that these hydrous phases could host significant amounts of water at core-mantle boundary conditions (1500 °C and 23 GPa) in a hydrous Martian mantle.  相似文献   

4.
This study demonstrates that a hydrous, halide bearing silicate melt is a viable medium for diamond growth. Experiments were conducted in the MgO–SiO2–H2O–C ± KCl ± NaCl system, which was used as a model for harzburgitic mantle. In no case did we observe crystals that could be interpreted as spontaneously nucleated, but growth of diamond on seed crystals at 1,400–1,600°C and 7 GPa in experiments of 4 h duration was observed. The addition of KCl to the system produced crystallization of diamond at temperatures as low as 1,400°C. At higher temperatures, larger growth features were produced than those that seen in the KCl-free system at the same conditions. The NaCl-bearing system is different; in these experiments, the diamond seed crystals show evidence of possible dissolution and layer growth, albeit more subdued growth than in the KCl system. Therefore, NaCl may be an inhibitor of diamond growth in a hydrous silicate melt. Based on these results, hydrous silicate melts could play a role in formation of diamond in either deep subduction zones, or above slabs imbricated against a lithospheric ‘root’ in the sub-continental lithospheric mantle. The water and halide necessary for their formation could be transported into the mantle in hydrous phases such as serpentine in subducting lithospheric slabs. Dehydration of serpentine at >200 km depth would release hydrous, halide-bearing fluids into the overlying mantle wedge or lithospheric root, triggering melting at conditions similar to those of the formation of natural diamond.  相似文献   

5.
The H2O content of wadsleyite were measured in a wide pressure (13–20 GPa) and temperature range (1,200–1,900°C) using FTIR method. We confirmed significant decrease of the H2O content of wadsleyite with increasing temperature and reported first systematic data for temperature interval of 1,400–1,900°C. Wadsleyite contains 0.37–0.55 wt% H2O at 1,600°C, which may be close to its water storage capacity along average mantle geotherm in the transition zone. Accordingly, water storage capacity of the average mantle in the transition zone may be estimated as 0.2–0.3 wt% H2O. The H2O contents of wadsleyite at 1,800–1,900°C are 0.22–0.39 wt%, indicating that it can store significant amount of water even under the hot mantle environments. Temperature dependence of the H2O content of wadsleyite can be described by exponential equation C\textH2 \textO = 6 3 7.0 7 \texte - 0.00 4 8T , C_{{{\text{H}}_{2} {\text{O}}}} = 6 3 7.0 7 {\text{e}}^{ - 0.00 4 8T} , where T is in °C. This equation is valid for temperature range 1,200–2,100°C with the coefficient of determination R 2 = 0.954. Temperature dependence of H2O partition coefficient between wadsleyite and forsterite (D wd/fo) is complex. According to our data apparent Dwd/fo decreases with increasing temperature from D wd/fo = 4–5 at 1,200°C, reaches a minimum of D wd/fo = 2.0 at 1,400–1,500°C, and then again increases to D wd/fo = 4–6 at 1,700–1,900°C.  相似文献   

6.
The onset of hydrous partial melting in the mantle above the transition zone is dictated by the H2O storage capacity of peridotite, which is defined as the maximum concentration that the solid assemblage can store at P and T without stabilizing a hydrous fluid or melt. H2O storage capacities of minerals in simple systems do not adequately constrain the peridotite water storage capacity because simpler systems do not account for enhanced hydrous melt stability and reduced H2O activity facilitated by the additional components of multiply saturated peridotite. In this study, we determine peridotite-saturated olivine and pyroxene water storage capacities at 10–13 GPa and 1,350–1,450°C by employing layered experiments, in which the bottom ~2/3 of the capsule consists of hydrated KLB-1 oxide analog peridotite and the top ~1/3 of the capsule is a nearly monomineralic layer of hydrated Mg# 89.6 olivine. This method facilitates the growth of ~200-μm olivine crystals, as well as accessory low-Ca pyroxenes up to ~50 μm in diameter. The presence of small amounts of hydrous melt ensures that crystalline phases have maximal H2O contents possible, while in equilibrium with the full peridotite assemblage (melt + ol + pyx + gt). At 12 GPa, olivine and pyroxene water storage capacities decrease from ~1,000 to 650 ppm, and ~1,400 to 1,100 ppm, respectively, as temperature increases from 1,350 to 1,450°C. Combining our results with those from a companion study at 5–8 GPa (Ardia et al., in prep.) at 1,450°C, the olivine water storage capacity increases linearly with increasing pressure and is defined by the relation C\textH2 \textO\textolivine ( \textppm ) = 57.6( ±16 ) ×P( \textGPa ) - 169( ±18 ). C_{{{\text{H}}_{2} {\text{O}}}}^{\text{olivine}} \left( {\text{ppm}} \right) = 57.6\left( { \pm 16} \right) \times P\left( {\text{GPa}} \right) - 169\left( { \pm 18} \right). Adjustment of this trend for small increases in temperature along the mantle geotherm, combined with experimental determinations of D\textH2 \textO\textpyx/olivine D_{{{\text{H}}_{2} {\text{O}}}}^{\text{pyx/olivine}} from this study and estimates of D\textH2 \textO\textgt/\textolivine D_{{{\text{H}}_{2} {\text{O}}}}^{{{\text{gt}}/{\text{olivine}}}} , allows for estimation of peridotite H2O storage capacity, which is 440 ± 200 ppm at 400 km. This suggests that MORB source upper mantle, which contains 50–200 ppm bulk H2O, is not wet enough to incite a global melt layer above the 410-km discontinuity. However, OIB source mantle and residues of subducted slabs, which contain 300–1,000 ppm bulk H2O, can exceed the peridotite H2O storage capacity and incite localized hydrous partial melting in the deep upper mantle. Experimentally determined values of D\textH2 \textO\textpyx/\textolivine D_{{{\text{H}}_{2} {\text{O}}}}^{{{\text{pyx}}/{\text{olivine}}}} at 10–13 GPa have a narrow range of 1.35 ± 0.13, meaning that olivine is probably the most important host of H2O in the deep upper mantle. The increase in hydration of olivine with depth in the upper mantle may have significant influence on viscosity and other transport properties.  相似文献   

7.
High PT experiments were performed in the range 2.5–19 GPa and 800–1,500°C using a synthetic peridotite doped with trace elements and OH-apatite or with Cl-apatite + phlogopite. The aim of the study was (1) to investigate the stability and phase relations of apatite and its high PT breakdown products, (2) to study the compositional evolution with P and T of phosphate and coexisting silicate phases and (3) to measure the Cl-OH partitioning between apatite and coexisting calcic amphibole, phlogopite and K-richterite. Apatite is stable in a garnet-lherzolite assemblage in the range 2.5–8.7 GPa and 800–1,100°C. The high-P breakdown product of apatite is tuite γ-Ca3 (PO4)2, which is stable in the range 8–15 GPa and 1,100–1,300°C. Coexisting apatite and tuite were observed at 8 GPa/1,050°C and 8.7 GPa/1,000°C. MgO in apatite increases with P from 0.8 wt% at 2.5 GPa to 3.2 wt% at 8.7 GPa. Both apatite and tuite may contain significant Na, Sr and REE with a correlation indicating 2 Ca2+=Na+ + REE3+. Tuite has always higher Sr and REE and lower Fe and Mg than apatite. Phosphorus in the peridotite phases decreases in the order Pmelt ≫ Pgrt ≫ PMg2SiO4 > Pcpx > Popx. The phosphate-saturated P2O5 content of garnet increases from 0.07 wt% at 2.5 GPa to 1.5 wt% at 12.8 GPa. Due to the low bulk Na content of the peridotite, [8]Na[4]P[8]M2+ −1 [4]Si−1 only plays a minor role in controlling the phosphorus content of garnet. Instead, element correlations indicate a major contribution of [6]M2+[4]P[6]M3+ −1 [4]Si−1. Pyroxenes contain ~200–500 ppm P and olivine has 0.14–0.23 wt% P2O5 in the P range 4–8.7 GPa without correlation with P, T or XMg. At ≥12.7 GPa, all Mg2SiO4 polymorphs have <200 ppm P. Coexisting olivine and wadsleyite show an equal preference for phosphorus. In case of coexisting wadsleyite and ringwoodite, the latter fractionates phosphorus. Although garnet shows by far the highest phosphorus concentrations of any peridotite silicate phase, olivine is no less important as phosphorus carrier and could store the entire bulk phosphorus budget of primitive mantle. In the Cl-apatite + phlogopite-doped peridotite, apatite contains 0.65–1.35 wt% Cl in the PT range 2.5–8.7 GPa/800–1,000°C. Apatite coexists with calcic amphibole at 2.5 GPa, phlogopite at 2.5–5 GPa and K-richterite at 7 GPa, and all silicates contain between 0.2 and 0.6 wt% Cl. No solid potassic phase is stable between 5 and 8.7 GPa. Cl strongly increases the solubility of K in hydrous fluids. This may lead to the breakdown of phlogopite and give rise to the local presence in the mantle of fluids strongly enriched in K, Cl, P and incompatible trace elements. Such fluids may get trapped as micro-inclusions in diamonds and provide bulk compositions suitable for the formation of unusual phases such as KCl or hypersilicic Cl-rich mica.  相似文献   

8.
The melting behaviour of three carbonated pelites containing 0–1 wt% water was studied at 8 and 13 GPa, 900–1,850°C to define conditions of melting, melt compositions and melting reactions. At 8 GPa, the fluid-absent and dry carbonated pelite solidi locate at 950 and 1,075°C, respectively; >100°C lower than in carbonated basalts and 150–300°C lower than the mantle adiabat. From 8 to 13 GPa, the fluid-present and dry solidi temperatures then increase to 1,150 and 1,325°C for the 1.1 wt% H2O and the dry composition, respectively. The melting behaviour in the 1.1 wt% H2O composition changes from fluid-absent at 8 GPa to fluid-present at 13 GPa with the pressure breakdown of phengite and the absence of other hydrous minerals. Melting reactions are controlled by carbonates, and the potassium and hydrous phases present in the subsolidus. The first melts, which composition has been determined by reverse sandwich experiments, are potassium-rich Ca–Fe–Mg-carbonatites, with extreme K2O/Na2O wt ratios of up to 42 at 8 GPa. Na is compatible in clinopyroxene with D\textNa\textcpx/\textcarbonatite = 10-18 D_{\text{Na}}^{{{\text{cpx}}/{\text{carbonatite}}}} = 10{-}18 at the solidus at 8 GPa. The melt K2O/Na2O slightly decreases with increasing temperature and degree of melting but strongly decreases from 8 to 13 GPa when K-hollandite extends its stability field to 200°C above the solidus. The compositional array of the sediment-derived carbonatites is congruent with alkali- and CO2-rich melt or fluid inclusions found in diamonds. The fluid-absent melting of carbonated pelites at 8 GPa contrasts that at ≤5 GPa where silicate melts form at lower temperatures than carbonatites. Comparison of our melting temperatures with typical subduction and mantle geotherms shows that melting of carbonated pelites to 400-km depth is only feasible for extremely hot subduction. Nevertheless, melting may occur when subduction slows down or stops and thermal relaxation sets in. Our experiments show that CO2-metasomatism originating from subducted crust is intimately linked with K-metasomatism at depth of >200 km. As long as the mantle remains adiabatic, low-viscosity carbonatites will rise into the mantle and percolate upwards. In cold subcontinental lithospheric mantle keels, the potassic Ca–Fe–Mg-carbonatites may freeze when reacting with the surrounding mantle leading to potassium-, carbonate/diamond- and incompatible element enriched metasomatized zones, which are most likely at the origin of ultrapotassic magmas such as group II kimberlites.  相似文献   

9.
Raman spectra of monoclinic Fo90 hydrous wadsleyite with 2.4 wt% H2O have been measured in a diamond-anvil cell with helium as a pressure-transmitting medium to 58.4 GPa at room temperature. The most intense, characteristic wadsleyite modes, the Si–O–Si symmetric stretch at 721 cm−1 and the symmetric stretch of the SiO3 unit at 918 cm−1, shift continuously to 58.4 GPa showing no evidence of a first order change in the crystal structure despite compression well beyond the stability field of wadsleyite in terms of pressure. The pressure dependence of these two modes is nearly identical for Fo90 hydrous and Fo100 anhydrous wadsleyite. A striking feature in the high-pressure Raman spectra of Fo90 hydrous wadsleyite is the appearance of new Raman modes above 9 GPa in the mid-frequency range (300–650 cm−1 at 1-bar and shifted to 500–850 cm−1 at 58.4 GPa) accompanied by a significant growth in their intensities under further compression. In the OH stretching frequency range Fo90 hydrous wadsleyite exhibits a larger number of modes than the Mg end-member phase. The higher number of modes may be due to either additional protonation sites or simply that we observe a different subset of all possible OH modes for each sample. The high-pressure behaviour of the OH stretching modes of Fo90 and Fo100 hydrous wadsleyite is consistent: OH stretching modes with frequencies <3,530 cm−1 decrease with increasing pressure whereas the higher-frequency OH modes show a close to constant pressure dependence to at least 13.2 GPa. The approximately constant pressure dependence of the OH modes above 3,530 cm−1 is consistent with protons being located at the O1···O edges around M3.  相似文献   

10.
Experiments have been conducted in a peralkaline Ti-KNCMASH system representative of MARID-type bulk compositions to delimit the stability field of K-richterite in a Ti-rich hydrous mantle assemblage, to assess the compositional variation of amphibole and coexisting phases as a function of P and T, and to characterise the composition of partial melts derived from the hydrous assemblage. K-richterite is stable in experiments from 0.5 to 8.0 GPa coexisting with phlogopite, clinopyroxene and a Ti-phase (titanite, rutile or rutile + perovskite). At 8.0 GPa, garnet appears as an additional phase. The upper T stability limit of K-richterite is 1200–1250 °C at 4.0 GPa and 1300–1400 °C at 8.0 GPa. In the presence of phlogopite, K-richterite shows a systematic increase in K with increasing P to 1.03 pfu (per formula unit) at 8.0 GPa/1100 °C. In the absence of phlogopite, K-richterite attains a maximum of 1.14 K pfu at 8.0 GPa/1200 °C. Titanium in both amphibole and mica decreases continuously towards high P with a nearly constant partitioning while Ti in clinopyroxene remains more or less constant. In all experiments below 6.0 GPa ΣSi + Al in K-richterite is less than 8.0 when normalised to 23 oxygens+stoichiometric OH. Rutiles in the Ti-KNCMASH system are characterised by minor Al and Mg contents that show a systematic variation in concentration with P(T) and the coexisting assemblage. Partial melts produced in the Ti-KNCMASH system are extremely peralkaline [(K2O+Na2O)/Al2O3 = 1.7–3.7], Si-poor (40–45 wt% SiO2), and Ti-rich (5.6–9.2 wt% TiO2) and are very similar to certain Ti-rich lamproite glasses. At 4.0 GPa, the solidus is thought to coincide with the K-richterite-out reaction, the first melt is saturated in a phlogopite-rutile-lherzolite assemblage. Both phlogopite and rutile disappear ca. 150 °C above the solidus. At 8.0 GPa, the solidus must be located at T≤1400 °C. At this temperature, a melt is in equilibrium with a garnet- rutile-lherzolite assemblage. As opposed to 4.0 GPa, phlogopite does not buffer the melt composition at 8.0 GPa. The experimental results suggest that partial melting of MARID-type assemblages at pressures ≥4.0 GPa can generate Si-poor and partly ultrapotassic melts similar in composition to that of olivine lamproites. Received: 23 December 1996 / Accepted: 20 March 1997  相似文献   

11.
We conducted high-pressure phase equilibrium experiments in the systems MgSiO3 with 15 wt% H2O and Mg2SiO4 with 5 wt% and 11 wt% H2O at 20 ∼ 27 GPa. Based on the phase relations in these systems, together with the previous works on the related systems, we have clarified the stability relations of dense hydrous magnesium silicates in the system MgO-SiO2-H2O in the pressure range from 10 to 27 GPa. The results show that the stability field of phase G, which is identical to phase D and phase F, expands with increasing water contents. Water stored in serpentine in the descending cold slabs is transported into depths greater than 200 km, where serpentine decomposes to a mixture of phase A, enstatite, and fluid. Reaction sequences of the hydrous phases which appear at higher pressures vary with water content. In the slabs with a water content less than about 2 wt%, phase A carries water to a depth of 450 km. Hydrous wadsleyite, hydrous ringwoodite, and ilmenite are the main water reservoirs in the transition zone from 450 to 660 km. Superhydrous phase B is the water reservoir in the uppermost part of the lower mantle from 670 to 800 km, whereas phase G appears in the lower mantle only at depths greater than 800 km. In cold slabs with local water enrichment greater than 2 wt%, the following hydrous phases appear with increasing depths; phase A to 450 km, phase A and phase G from 450 km to 550 km, brucite, superhydrous phase B, and phase G from 550 km to 800 km, and phase G at depths greater than 800 km. Received: 4 August 1999 / Accepted: 1 March 2000  相似文献   

12.
The beginnings of hydrous mantle wedge melting   总被引:5,自引:3,他引:2  
This study presents new phase equilibrium data on primitive mantle peridotite (0.33 wt% Na2O, 0.03 wt% K2O) in the presence of excess H2O (14.5 wt% H2O) from 740 to 1,200°C at 3.2–6 GPa. Based on textural and chemical evidence, we find that the H2O-saturated peridotite solidus remains isothermal between 800 and 820°C at 3–6 GPa. We identify both quenched solute from the H2O-rich fluid phase and quenched silicate melt in supersolidus experiments. Chlorite is stable on and above the H2O-saturated solidus from 2 to 3.6 GPa, and chlorite peridotite melting experiments (containing ~6 wt% chlorite) show that melting occurs at the chlorite-out boundary over this pressure range, which is within 20°C of the H2O-saturated melting curve. Chlorite can therefore provide sufficient H2O upon breakdown to trigger dehydration melting in the mantle wedge or perpetuate ongoing H2O-saturated melting. Constraints from recent geodynamic models of hot subduction zones like Cascadia suggest that significantly more H2O is fluxed from the subducting slab near 100 km depth than can be bound in a layer of chloritized peridotite ~ 1 km thick at the base of the mantle wedge. Therefore, the dehydration of serpentinized mantle in the subducted lithosphere supplies free H2O to trigger melting at the H2O-saturated solidus in the lowermost mantle wedge. Alternatively, in cool subduction zones like the Northern Marianas, a layer of chloritized peridotite up to 1.5 km thick could contain all the H2O fluxed from the slab every million years near 100 km depth, which suggests that the dominant form of melting below arcs in cool subduction zones is chlorite dehydration melting. Slab PT paths from recent geodynamic models also allow for melts of subducted sediment, oceanic crust, and/or sediment diapirs to interact with hydrous mantle melts within the mantle wedge at intermediate to hot subduction zones.  相似文献   

13.
Phase relations of phlogopite with magnesite from 4 to 8 GPa   总被引:2,自引:2,他引:0  
To evaluate the stability of phlogopite in the presence of carbonate in the Earth’s mantle, we conducted a series of experiments in the KMAS–H2O–CO2 system. A mixture consisting of synthetic phlogopite (phl) and natural magnesite (mag) was prepared (phl90-mag10; wt%) and run at pressures from 4 to 8 GPa at temperatures ranging from 1,150 to 1,550°C. We bracketed the solidus between 1,200 and 1,250°C at pressures of 4, 5 and 6 GPa and between 1,150 and 1,200°C at a pressure of 7 GPa. Below the solidus, phlogopite coexists with magnesite, pyrope and a fluid. At the solidus, magnesite is the first phase to react out, and enstatite and olivine appear. Phlogopite melts over a temperature range of ~150°C. The amount of garnet increases above solidus from ~10 to ~30 modal% to higher pressures and temperatures. A dramatic change in the composition of quench phlogopite is observed with increasing pressure from similar to primary phlogopite at 4 GPa to hypersilicic at pressures ≥5 GPa. Relative to CO2-free systems, the solidus is lowered such, that, if carbonation reactions and phlogopite metasomatism take place above a subducting slab in a very hot (Cascadia-type) subduction environment, phlogopite will melt at a pressure of ~7.5 GPa. In a cold (40 mWm−2) subcontinental lithospheric mantle, phlogopite is stable to a depth of 200 km in the presence of carbonate and can coexist with a fluid that becomes Si-rich with increasing pressure. Ascending kimberlitic melts that are produced at greater depths could react with peridotite at the base of the subcontinental lithospheric mantle, crystallizing phlogopite and carbonate at a depth of 180–200 km.  相似文献   

14.
 Raman spectra of a single-crystal fragment of hydrous γ-Mg2SiO4, synthesized in a multianvil press, have been measured in a diamond-anvil cell with helium as pressure-transmitting medium to 56.5 GPa at room temperature. All five characteristic spinel Raman modes shift continuously up to the highest pressure, showing no evidence for a major change in the crystal structure despite compression well beyond the stability field of ringwoodite in terms of pressure. At pressures above ∼30 GPa a new mode on the low-frequency site of the two silicate-stretching modes is clearly identifiable, indicating a modification in the spinel structure which is reversible on pressure release. The frequency of the new mode (802 cm−1 extrapolated to 1 bar) suggests the presence of Si–O–Si linkages and/or a partial increase in the coordination of Si. Direct determination of the subtle structural change causing the new Raman mode would require high-pressure, single-crystal synchrotron X-ray diffraction experiments. The Raman modes of hydrous and anhydrous Mg-end-member ringwoodite are nearly identical up to 20 GPa, suggesting that protonation has only minor effect on the lattice dynamics over the entire pressure stability range for ringwoodite in the mantle. Received: 7 December 2001 / Accepted: 16 April 2002  相似文献   

15.
The crystal structures of the two hydrous wadsleyite crystals with formulae, Mg1.75SiH0.50O4 (0.5H–β) and Mg1.86SiH0.28O4 (0.3H–β) have been analyzed in this study. The single-crystal X-ray diffraction data showed that the unit cells of the 0.3H–β and the 0.5H–β are metrically monoclinic with a slight distortion from the orthorhombic cell but their intensity distributions conform to the orthorhombic symmetry within the limit of experimental errors. The Fourier and the difference Fourier syntheses were calculated. Small but significant Fourier peaks were found at the site, Si2, in a normally vacant tetrahedral void adjacent to Mg3 site as reported for the monoclinic hydrous wadsleyite by Smyth et al.. From the comparison of the hydrous and anhydrous wadsleyite structures, the Mg-vacant structural modules were found to be the building units for the structure of hydrous wadsleyite. The dilution of symmetry from orthorhombic to monoclinic in the hydrous wadsleyite structure is interpreted qualitatively due to lack of mirror perpendicular to the a axis in the module. The mode of arrangement of the Mg-vacant structural modules interprets the symmetry and hydrogen content of the hydrous wadsleyite and gives the structural relationship between hydrous wadsleyite and hydrous ringwoodite. Received: 8 May 1998 / Revised, accepted: 3 October 1998  相似文献   

16.
The mechanism of the high pressure transformation of olivine in the presence of aqueous fluid was investigated by high pressure experiments conducted nominally at the wadsleyite + ringwoodite stability field at 14.5 GPa and 700 and 800°C. The microstructures of recovered samples were observed using an analytical transmission electron microscope (ATEM) for which foils were prepared using a focused ion beam technique. Glass films approximately 1 μm in width always occupied the interface between olivine and hydrous ringwoodite. ATEM measurements showed that the chemical compositions of the glass films had approximately the same Mg/Fe ratio as that of olivine, but a higher Si content. Micro-structural and -chemical observations suggest that these glass films formed as quenched glass from the aqueous fluid dissolving olivine and that hydrous ringwoodite was crystallized from the fluid. This indicates that the transformation of olivine to hydrous ringwoodite was prompted by the dissolution–reprecipitation process. The dissolution–reprecipitation process is considered an important mineral replacement mechanism in the Earth’s crust by which one mineral is replaced by a more stable phase or phases. However, this process has not previously been reported for deep mantle conditions.  相似文献   

17.
The phase relations in the Fe2SiO4–Fe3O4 binary system have been determined between 900 and 1200 °C and from 2.0 to 9.0 GPa. At low to moderate pressures magnetite can accommodate significant Si, reaching XFe2SiO4=0.1 and 0.2 at 3.0 and 5.0 GPa respectively, with temperature having only a secondary influence. At pressures below 3.5 GPa at 900 °C and 2.6 GPa at 1100 °C magnetite-rich spinel coexists with pure fayalite. This assemblage becomes unstable at higher pressures with respect to three intermediate phases that are spinelloid polytypes isostructural to spinelloids II, III and V in the Ni-aluminosilicate system. The phase relations between the spinelloid phases are complex. At pressures above ≈8.0 GPa at 1100 °C, the spinelloid phases give way to a complete spinel solid solution between Fe3O4 and Fe2SiO4. The presence of small amounts of Fe3+ stabilises the spinel structure to lower pressures compared to the Fe2SiO4 end member. This means that the fayalite–γ-spinel transition is generally unsuitable as a pressure calibration point for experimental apparatuses. The molar volumes of the spinel solid solutions vary nearly linearly with composition, having a small negative deviation from ideal behaviour described by Wv=−0.15(6) cm3. Extrapolation yields V°(298) = 41.981(14) cm3 for the Fe2SiO4-spinel end member. The cell parameters and molar volumes of the three spinelloid polytypes vary systematically with composition. Cation disorder is an important factor in stabilising the spinelloid polytypes. Each polytype exhibits a particular solid solution range that is directly influenced by the interplay between its structure and the cation distributions that are energetically favourable. In the FeO–FeO1.5–SiO2 ternary system Fe7SiO10 (“iscorite”) coexists with the spinelloid phases at intermediate pressures on the SiO2-poor, or Fe3+-poor side of the Fe2SiO4–Fe3O4 join. On the SiO2 and Fe3+-rich side of the join, orthopyroxene or high-P clinopyroxene coexists with the spinelloids and spinel solid solutions. The assemblage pyroxene+spinel+SiO2 is stable over a wide range of bulk composition. The stability of spinelloid III is of particular petrologic interest since this phase has the same structure as (Mg,Fe)2SiO4–wadsleyite, indicating that Fe3+ can be easily incorporated in this important phase in the Earth's transition zone, in addition to silicate spinel. This has important implications for the redox state of the Earth's transition zone and for the depth at which the olivine to spinel transition occurs in the mantle, potentially leading to a shift in the “410 km” seismic discontinuity to shallower depths depending on the prevailing redox state. In addition, a coupled tetrahedral substitution of Fe3++OH for Si+O could provide a further mechanism for the incorporation of H2O in wadsleyite. Received: 10 January 2000 / Accepted: 12 May 2000  相似文献   

18.
The metasomatism observed in the oceanic and continental lithosphere is generally interpreted to represent a continuous differentiation process forming anhydrous and hydrous veins plus a cryptic enrichment in the surrounding peridotite. In order to constrain the mechanisms of vein formation and potentially clarify the nature and origin of the initial metasomatic agent, we performed a series of high-pressure experiments simulating the liquid line of descent of a basanitic magma differentiating within continental or mature oceanic lithosphere. This series of experiments has been conducted in an end-loaded piston cylinder apparatus starting from an initial hydrous ne-normative basanite at 1.5 GPa and temperature varying between 1,250 and 980°C. Near-pure fractional crystallization process was achieved in a stepwise manner in 30°C temperature steps and starting compositions corresponding to the liquid composition of the previous, higher-temperature glass composition. Liquids evolve progressively from basanite to peralkaline, aluminum-rich compositions without significant SiO2 variation. The resulting cumulates are characterized by an anhydrous clinopyroxene + olivine assemblage at high temperature (1,250–1,160°C), while at lower temperature (1,130–980°C), hydrous cumulates with dominantly amphibole + minor clinopyroxene, spinel, ilmenite, titanomagnetite and apatite (1,130–980°C) are formed. This new data set supports the interpretation that anhydrous and hydrous metasomatic veins could be produced during continuous differentiation processes of primary, hydrous alkaline magmas at high pressure. However, the comparison between the cumulates generated by the fractional crystallization from an initial ne-normative liquid or from hy-normative initial compositions (hawaiite or picrobasalt) indicates that for all hydrous liquids, the different phases formed upon differentiation are mostly similar even though the proportions of hydrous versus anhydrous minerals could vary significantly. This suggests that the formation of amphibole-bearing metasomatic veins observed in the lithospheric mantle could be linked to the differentiation of initial liquids ranging from ne-normative to hy-normative in composition. The present study does not resolve the question whether the metasomatism observed in lithospheric mantle is a precursor or a consequence of alkaline magmatism; however, it confirms that the percolation and differentiation of a liquid produced by a low degree of partial melting of a source similar or slightly more enriched than depleted MORB mantle could generate hydrous metasomatic veins interpreted as a potential source for alkaline magmatism by various authors.  相似文献   

19.
 The solubility of hydroxyl in the α, β and γ phases of (Mg,Fe)2SiO4 was investigated by hydrothermally annealing single crystals of San Carlos olivine. Experiments were performed at a temperature of 1000° or 1100 °C under a confining pressure of 2.5 to 19.5 GPa in a multianvil apparatus with the oxygen fugacity buffered by the Ni:NiO solid-state reaction. Hydroxyl solubilities were determined from infrared spectra obtained of polished thin sections in crack-free regions ≤100 μm in diameter. In the α-stability field, hydroxyl solubility increases systematically with increasing confining pressure, reaching a value of ∼20,000 H/106Si (1200 wt ppm H2O) at the α-β phase boundary near 13 GPa and 1100 °C. In the β field, the hydroxyl content is ∼400,000 H/106Si (24,000 wt ppm H2O) at 14–15 GPa and 1100 °C. In the γ field, the solubility is ∼450,000 H/106Si (27,000 wt ppm H2O) at 19.5 GPa and 1100 °C. The observed dependence of hydroxyl solubility with increasing confining pressure in the α phase reflects an increase in water fugacity with increasing pressure moderated by a molar volume term associated with the incorporation of hydroxyl ions into the olivine structure. Combined with published results on the dependence of hydroxyl solubility on water fugacity, the present results for the α phase can be summarized by the relation C OH = A(T)fnH2Oexp(−PΔV/RT), where A(T) = 1.1 H/106Si/MPa at 1100 °C, n = 1, and ΔV = 10.6×10–6 m3/mol. These data demonstrate that the entire present-day water content of the upper mantle could be incorporated in the mineral olivine alone; therefore, a free hydrous fluid phase cannot be stable in those regions of the upper mantle with a normal concentration of hydrogen. Free hydrous fluids are restricted to special tectonic environments, such as the mantle wedge above a subduction zone. Received: 10 February 1995 / Accepted: 23 October 1995  相似文献   

20.
High-pressure and temperature experiments (28–62 GPa, and 1,490–2,000 K, corresponding to approximately 770–1,500 km depth in the mantle) have been conducted on a MgCO3 + SiO2 mixture using a laser-heated diamond anvil cell combined with analytical transmission electron microscope observation of the product phases to constrain the fate of carbonates carried on the subducting basalt into the lower mantle. At these conditions, the decarbonation reaction MgCO3 (magnesite) + SiO2 (stishovite) → MgSiO3 (perovskite) + CO2 (solid) has been recognized. This indicates that above reaction takes place as a candidate for decarbonation of the carbonated subducting mid ocean ridge basalts in the Earth’s lower mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号