首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

This paper has reported the first application of 40Ar/39 Ar dating to orthoclase from Qitianling granite. The resultant plateau ages yielded by three orthoclase specimens 2KL-17, 99LQ-2 and 2KL-31 (Note: The last one was taken from the part of granite which had been attributed to Cailing super-unit of the Indosinian Period by the former researchers) collected from the said granite are (139.57±2.79) Ma, (140.55±2.81) Ma and (144.91±2.90) Ma respectively. The above-mentioned ages represent the closed 40Ar/39 Ar age of the orthoclase. The consistency in age dating results, the similarity in geochemical characteristics and rock textures, and the NW-SE orientation of orthoclase phenocrysts almost throughout the granite, provide evidence for the intimate relationship between the Furong super-unit and the Cailing super-unit that form the main part of the granite, suggesting that they are products of comagmatic conjugate differentiation during the Late Jurassic. This paper also makes a comparison between the Qitianling granite and the Qianlishan granite.

  相似文献   

2.
This paper has reported the first application of 40Ar/39 Ar dating to orthoclase from Qitianling granite. The resultant plateau ages yielded by three orthoclase specimens 2KL-17, 99LQ-2 and 2KL-31 (Note: The last one was taken from the part of granite which had been attributed to Cailing super-unit of the Indosinian Period by the former researchers) collected from the said granite are (139.57±2.79) Ma, (140.55±2.81) Ma and (144.91±2.90) Ma respectively. The above-mentioned ages represent the closed 40Ar/39 Ar age of the orthoclase. The consistency in age dating results, the similarity in geochemical characteristics and rock textures, and the NW-SE orientation of orthoclase phenocrysts almost throughout the granite, provide evidence for the intimate relationship between the Furong super-unit and the Cailing super-unit that form the main part of the granite, suggesting that they are products of comagmatic conjugate differentiation during the Late Jurassic. This paper also makes a comparison between the Qitianling granite and the Qianlishan granite.  相似文献   

3.
This paper has reported the first application of 40Ar/39Ar dating to orthoclase from Qitianling granite. The resultant plateau ages yielded by three orthoclase specimens 2KL-17, 99LQ-2 and 2KL-31 (Note: The last one was taken from the part of granite which had been attributed to Cailing super-unit of the Indosinian Period by the former researchers) collected from the said granite are (139.57±2.79) Ma, (140.55±2.81) Ma and (144.91±2.90) Ma respectively. The above-mentioned ages represent the closed 40Ar/39Ar age of the orthoclase. The consistency in age dating results, the similarity in geochemical characteristics and rock textures, and the NW-SE orientation of orthoclase phenocrysts almost throughout the granite, provide evidence for the intimate relationship between the Furong super-unit and the Cailing super-unit that form the main part of the granite, suggesting that they are products of comagmatic conjugate differentiation during the Late Jurassic. This paper also makes a comparison between the Qitianling granite and the Qianlishan granite.  相似文献   

4.
Zhao  Xinwei  Zhou  Jing  Ma  Fang  Ji  Jianqing  Deino  Alan 《中国科学:地球科学(英文版)》2020,63(5):662-673
Reconstruction of Quaternary environments, late Cenozoic geodynamics and evaluation of volcanic hazards, all depend on the precise delineation of eruptive stages. In recent years, laser ~(40)Ar/~(39)Ar dating methods have been widely used for dating young volcanic rocks, given their stable automated testing process, very low background level and high sensitivity, which meet the requirements for precise dating of young samples. This paper applied high-precision laser ~(40)Ar/~(39)Ar dating to the main volcanic units in the Tengchong area and obtained ages in the range of 0.025–5.1 Ma using conventional data processing methods. However, conventional dating highlighted issues related to very low radiogenic ~(40)Ar content, accidental errors and poor data stability, which led to huge age deviations. Moreover, lacking a unified timescale, conventional methods were unable to strictly define the stages of the Tengchong volcanic eruptions, leading to ongoing controversy. In this study, we applied a Gaussian mathematical model to deal with all 378 original ages from 13 samples. An apparent age-probability diagram,consisting of three independent waveforms, have been obtained. The corresponding isochron ages of these three waveforms suggest there were three volcanic eruptive stages, namely during the Pliocene(3.78±0.04 Ma), early Middle Pleistocene(0.63±0.03 Ma) and late Middle Pleistocene to early Late Pleistocene(0.139±0.005 Ma). These results accurately define eruptive stages in the Tengchong area.  相似文献   

5.
The Pliocene-Holocene Newer Volcanic Province (NVP) of southeastern Australia is an extensive, relatively well-preserved, intra-plate basaltic lava field containing more than 400 eruptive centres. This study reports new, high-precision 40Ar/39Ar ages for six young (300–600 ka) basalt flows from the NVP and is part of a broader initiative to constrain the extent, duration, episodicity and causation of NVP volcanism. Six fresh, holocrystalline alkali basalt flows were selected from the Warrnambool-Port Fairy area in the Western Plains sub-province for 40Ar/39Ar dating. These flows were chosen on the basis of pre-existing K-Ar age constraints, which, although variable, indicated eruption during a period of apparent relative volcanic quiescence (0.8–0.06 Ma).40Ar/39Ar ages were measured on multiple aliquots of whole rock basalt samples. Three separate flows from the Mount Rouse volcanic field yielded concordant 40Ar/39Ar age results, with a mean eruption age of 303 ± 13 ka (95% CI). An older weighted mean age of 382 ± 24 ka (2σ) was obtained for one sample from the central Rouse-Port Fairy Flow, suggesting extraneous argon contamination. Two basalt flows from the Mount Warrnambool volcano also yielded analogous results, with an average 40Ar/39Ar age of 542 ± 17 ka (95% CI). The results confirm volcanic activity during the interval of relative quiescence. Most previous K-Ar ages for these flows are generally older than the weighted mean 40Ar/39Ar ages, suggesting the presence of extraneous 40Ar. This study demonstrates the suitability of the 40Ar/39Ar incremental-heating method to obtain precise eruption ages for young, holocrystalline alkali basalt samples in the NVP.  相似文献   

6.
Neogene alkaline basaltic volcanic fields in the western Pannonian Basin, Hungary, including the Bakony–Balaton Highland and the Little Hungarian Plain volcanic fields are the erosional remnants of clusters of small-volume, possibly monogenetic volcanoes. Moderately to strongly eroded maars, tuff rings, scoria cones, and associated lava flows span an age range of ca. 6 Myr as previously determined by the K/Ar method. High resolution 40Ar/39Ar plateau ages on 18 samples have been obtained to determine the age range for the western Pannonian Basin Neogene intracontinental volcanic province. The new 40Ar/39Ar age determinations confirm the previously obtained K/Ar ages in the sense that no systematic biases were found between the two data sets. However, our study also serves to illustrate the inherent advantages of the 40Ar/39Ar technique: greater analytical precision, and internal tests for reliability of the obtained results provide more stringent constraints on reconstructions of the magmatic evolution of the volcanic field. Periods of increased activity with multiple eruptions occurred at ca. 7.95 Ma, 4.10 Ma, 3.80 Ma and 3.00 Ma.  相似文献   

7.
New high-precision single crystal sanidine 40Ar/39Ar ages for the Huckleberry Ridge Tuff (HRT), Yellowstone volcanic field, show that the three HRT members (A, B, and C) represent at least two different eruptions. The new 40Ar/39Ar ages (all ages calculated relative to the optimisation model of Renne et al., 2011) are: 2.135 ± 0.006 Ma, 2.131 ± 0.008 Ma, and 2.113 ± 0.004 Ma (2σ, full uncertainty propagation), for members A, B and C, respectively. Members A and B are within uncertainty of one another and both are more precise than, but in agreement with, previously published ages. Member C was erupted later than members A and B. HRT members A and B were deposited during the Reunion Normal Polarity Subchron (C2r.1n). Member C was deposited during Subchron C2r.1r. Previously published radiogenic and stable isotope data show that member C was sourced from an isotopically discrete magma with a higher fraction of crustal material than members A and B. The volume of the first HRT eruption is reduced by c. 12% from previous estimates and explosive eruptions from the Yellowstone volcanic field occurred more frequently, producing more homogeneous magma than was previously believed. High-precision 40Ar/39Ar dating is key for resolving the eruptive history of Yellowstone, temporal dissection of voluminous ignimbrites, and rigorous investigation of what constitutes a ‘super-eruption’.  相似文献   

8.
Detrital microcline grains from sedimentary strata preserve a record of thermal evolution in the temperature range ~ 100° to 200°C which can be revealed by40Ar/39Ar age spectrum analysis. Microcline separates from deep drill hole intersections with Eocene to Miocene sediments in the Basin and Tejon Blocks of the southern San Joaquin Valley, California, analysed by the age spectrum approach show radiogenic40Ar (40Ar*) gradients that record both the slow cooling of the uplifting sediment source ~ 65 Ma ago, and a recent thermal event. This information, in conjunction with the observation of fission track annealing in the coexisting apatites, allows estimation of the temperature-time conditions of this thermal event at about 140°C for ~ 200 ka. Present and paleotemperature data is in accord with heating related to several kilometers of Pleistocene sediment deposition. Heat flow calculations suggest that this recent subsidence has depressed the thermal gradient from about 30°C km?1 to the present apparent gradient of 24°C km?1.40Ar/39Ar analysis of detrital microcline crystals yields thermochronological information in the temperature-time range of petroleum maturation and provides this technique with potential as both a useful exploration tool and as a means of probing the fundamental geodynamic processes of basin evolution.  相似文献   

9.
40Ar/39Ar age spectrum analyses of samples from Broken Hill, New South Wales, indicate that the region has experienced a complex thermal history following high-grade metamorphism, 1660 Ma ago. The terrain cooled slowly (~3°C Ma?1) until about 1570 Ma ago, when the temperature fell below about 500°C. Following granitoid emplacement ~1500 Ma ago, the region remained relatively cold until affected by a thermal pulse 520±40Ma ago, causing temperatures to rise to~350°C in some places. During this event, accumulated40Ar was released from minerals causing a significant Ar partial pressure to develop. Laboratory Ar solubility data combined with the40Ar/39Ar age spectra gives a local estimate of this partial pressure of ~10?4atm. The region finally cooled below 100°C about 280 Ma ago.40Ar/39Ar age spectrum analyses of hornblende, plagioclase and clinopyroxene containing excess40Ar are characterized by saddle-shaped age spectra. Detailed analysis of plagioclase samples reveals a complex diffusion behaviour, which is controlled by exsolution structures. This effect, in conjunction with the presumed different lattice occupancy of excess40Ar with respect to radiogenic40Ar, appears to be responsible for the saddle-shaped age spectra.  相似文献   

10.
The Avanavero Dolerite intruding the Guiana Shield in western Suriname is a quartz gabbroic mass yielding a Rb-Sr isochron age of 1603 ± 27 Ma, while the mass has invaded basement with a Rb-Sr isochron age of 1810 ± 40 Ma (λ = 1.47 × 10?11/a; errors with 95% confidence level). From 61 K-Ar measurements on whole-rocks, sieve fractions of whole-rocks, density fractions and separated minerals it is evident that nearly all investigated samples, fractions and minerals (except microcline which suffered some argon loss) contain excess40Ar. This excess40Ar is very inhomogeneously distributed through the gabbroic mass. The bulk is stored in the plagioclase, in which mineral the excess40Ar attains unusually high values ranging from about 14 × 10?6 to around 150 × 10?6cm3 NTP/g. The excess40Ar contents of biotite, hornblende and the pyroxenes are comparable to published data.Two samples from a core drilling were studied in some detail. In graphs of radiogenic40Ar versus K, four mineral separates from one sample display a fairly good, but geochronologically meaningless linear arrangement roughly passing through the origin. Most density fractions from the other sample show a tendency towards an array parallel to the 1603 Ma reference isochron.It is assumed that the excess40Ar was acquired by the Avanavero Dolerite during a moderate tectonothermal event 1200 ± 100 Ma ago, when the40Ar partial pressure was much higher in the environmental basement complexes than in the basic mass.  相似文献   

11.
A dating of two biotite samples taken from the meso- and low-temperature mylonites within the Shangyi-Chicheng fault belt on the north of the North China Craton yields 40Ar/39Ar isotopic ages of (399 ± 1) Ma and (263 ± 2) Ma, respectively. These data reflect an Early Devonian deformation and a Late Carboniferous retrograde metamorphism event along the fault, suggesting that the tectonic activities of the North China Craton in Paleozoic should be reconsidered.  相似文献   

12.
Precise 40Ar/39Ar age determinations made on basalt groundmass collected from the SP and upper and lower Bar Ten lava flows in the San Francisco and Uinkaret volcanic fields of Arizona, USA, yield ages of 72 ± 4, 97 ± 10, and 123 ± 12 ka (2σ; relative to Renne et al., 2010, 2011, full external precision), respectively. Previous ages of the SP lava flow include a K–Ar age of 70 ± 8 ka and OSL ages of 5.5–6 ka. 40Ar/39Ar age constraints, relative to the optimization model of Renne et al. (2010, 2011), of 81 ± 50 and 118 ± 64 ka (2σ; full external precision) were previously reported for the upper and lower Bar Ten lava flows, respectively. The new 40Ar/39Ar ages are within uncertainty of previous age constraints, and are more robust, accurate, and precise. Preliminary cosmogenic 3He and 21Ne production rates from the Bar Ten flows reported by Fenton et al. (2009) are updated here, to account for the improved quality of the 40Ar/39Ar data. The new 40Ar/39Ar age for the SP flow yields cosmogenic 3He and 21Ne production rates for pyroxene (119 ± 8 and 26.8 ± 1.9 at/g/yr; error-weighted mean, 2σ uncertainty; Dunai (2000) scaling method) that are consistent with production rate values reported throughout the literature. The 40Ar/39Ar and cosmogenic 3He and 21Ne data support field observations indicating the SP flow has undergone negligible erosion. The SP flow contains co-existing phenocrysts of olivine and pyroxene, as well as xenocrysts of quartz in a fine-grained groundmass facilitating cross-calibration of cosmogenic production rates and production-rate (3He, 10Be, 14C, 21Ne, 26Al, and 36Cl). Thus, we propose the SP flow is an excellent location for a cosmogenic nuclide production-rate calibration site (SPICE: the SP Flow Production-Rate Inter-Calibration Site for Cosmogenic-Nuclide Evaluations).  相似文献   

13.
New40Ar/39Ar plateau ages from rocks of Changle-Nanao ductile shear zone are 107.9 Ma(Mus), 108.2 Ma(Bi), 107.1 Ma(Bi), 109.2 Ma(Hb) and 117.9 Ma(Bi) respectively, which are concordant with their isochron ages and record the formation age of the ductile shear zone. The similarity and apparent overlap of the cooling ages with respective closure temperatures of 5 minerals document initial rapid uplift during 107–118 Ma following the collision between the Min-Tai microcontinent and the Min-Zhe Mesozoic volcanic arc. The40Ar/39 Ar plateau ages, K-Ar date of K-feldspar and other geochronologic information suggest that the exhumation rate of the ductile shear zone is about 0.18–1.12 mm/a in the range of 107–70 Ma, which is mainly influenced by tectonic extension.  相似文献   

14.
High-precision 40Ar/39Ar ages for a series of proximal tuffs from the Toba super-volcano in Indonesia, and the Bishop Tuff and Lava Creek Tuff B in North America have been obtained. Core from Ocean Drilling Project Site 758 in the eastern equatorial Indian Ocean contains discrete tephra layers that we have geochemically correlated to the Young Toba Tuff (73.7 ± 0.3 ka), Middle Toba Tuff (502 ± 0.7 ka) and two eruptions (OTTA and OTTB) related to the Old Toba Tuff (792.4 ± 0.5 and 785.6 ± 0.7 ka, respectively) (40Ar/39Ar data reported as full external precision, 1 sigma). Within ODP 758 Termination IX is coincident with OTTB and hence this age tightly constrains the transition from Marine Isotope Stage 19–20 for the Indian Ocean. The core also preserves the location of the Australasian tektites, and the Matuyama-Brunhes boundary with Bayesian age-depth models used to determine the ages of these events, c. 786 and c. 784 ka, respectively. In North America, the Bishop Tuff (766.6 ± 0.4 ka) and Lava Creek Tuff B (627.0 ± 1.5 ka) have quantifiable stratigraphic relationships to the Matuyama-Brunhes boundary. Linear age-depth extrapolation, allowing for uncertainties associated with potential hiatuses in five different terrestrial sections, defines a geomagnetic reversal age of 789 ± 6 ka. Considering our data with respect to the previously published age data for the Matuyama-Brunhes boundary of Sagnotti et al. (2014), we suggest at the level of temporal resolution currently attainable using radioisotopic dating the last reversal of Earths geomagnetic field was isochronous. An overall Matuyama-Brunhes reversal age of 783.4 ± 0.6 ka is calculated, which allowing for inherent uncertainties in the astronomical dating approach, is indistinguishable from the LR04 stack age (780 ± 5 ka) for the geomagnetic boundary. Our high-precision age is 10 ± 2 ka older than the Matuyama-Brunhes boundary age of 773 ± 1 ka, as reported previously by Channell et al. (2010) for Atlantic Ocean records. As ODP 758 features in the LR04 marine stack, the high-precision 40Ar/39Ar ages determined here, as well as the Matuyama-Brunhes boundary age, can be used as temporally accurate and precise anchors for the Pleistocene time scale.  相似文献   

15.
Gneisses within an Archean basement terrane adjacent to the southwestern portion of the Labrador Trough were variably retrograded during a regional metamorphism of Grenville age (ca. 1000 Ma). Biotites from non-retrograded segments of the gneiss terrane record40Ar/39Ar plateau and isochron ages which date times of cooling following an episode of the Kenoran orogeny (2376–2391 Ma). A suite of gneiss samples displaying varying degrees of retrograde alteration was collected across the Grenville metamorphic gradient. Biotites in these samples show no petrographic evidence of retrograde alteration, however they do record internally discordant40Ar/39Ar age spectra. Although the extent of internal discordance is variable, the overall character of the release patterns is similar with younger apparent ages recorded in intermediate-temperature gas fractions. The total-gas dates range from 2257±27 Ma (northwest) to 1751±23 Ma (southeast), suggesting that variable quantities of radiogenic argon were lost from the Archean biotites during Grenville metamorphism. The “saddle-shaped” nature of the discordant spectra indicates that argon loss was not accomplished through single-stage, volume diffusion processes.Biotites in portions of the gneiss terrane which were completely recrystallized during Grenville metamorphism are petrographically and texturally distinct. A representative of this phase records a40Ar/39Ar plateau age of 2674±28 Ma. This date is markedly inconsistent with regional constraints on the timing of Grenville metamorphism, and indicates the presence of extraneous argon components. Both the extraneous and radiogenic argon components must have been liberated in constant proportions during experimental heating because the argon isotopic data yield a well-defined40Ar/36Ar vs.39Ar/36Ar isochron corresponding to an age (2658±23 Ma) similar to that defined by the plateau portion of the spectrum.The40Ar/39Ar biotite dates suggest that the effects of Grenville metamorphism extent 15–20 km northward into the Superior Province. The limit of this overprint is approximately coincident with the northernmost development of Grenville age thrust faults in the Archean terrane. Therefore, it is proposed that the northern margin of the Grenville Province in southwestern Labrador should be located along the northernmost Grenville thrust fault because this represents both a structural and a thermal discontinuity.  相似文献   

16.
To improve the French Plio-Pleistocene biostratigraphy scheme based on mammal biozone boundaries or “Mammal Neogene/Quaternary Zones” (MNQ) we collected volcanic material that could be dated using the 40Ar/39Ar method in five exceptional mammalian paleofauna sites located in the Massif Central (France). We present 40Ar/39Ar ages that we obtained for Perrier-Les Etouaires, Roca-Neyra, Chilhac, Senèze and le Creux de Peyrolles. We show that the overall stratigraphic position of these sites based on faunal assemblages is valid from the relative point of view. However, we greatly improve both the accuracy and precision of the age of these mammalian paleofaunas. We obtained 40Ar/39Ar ages varying between 2.78 ± 0.01 Ma (1σ external) for Les Etouaires (Lower MNQ 16b) and 1.47 ± 0.01 Ma for the Creux de Peyrolles site (MNQ 19). Based on these new dates we estimate the duration of several biozones including MNQ 16b, 17a and 17b. We suggest that the first Late Villafranchian biozone (MNQ 18) starts as early as the Reunion subchron or just after. The first occurrence of Equus stenonis in Roca-Neyra (i.e. 2.60 ± 0.02 Ma) is close to or synchronous with the Gauss–Matuyama transition (i.e. 2.59 Ma) and the Pliocene/Pleistocene boundary. The chronological framework we build shows the very rapid increase of the large grazers community in French faunal assemblages at the beginning of MNQ 17 (i.e. 2.6 to 2.4 Ma). This rapid faunal turnover is probably associated with a general decrease of woodland habitat in the Massif Central contemporaneous with the onset of the Northern Hemisphere glaciations. The faunal assemblages in France, Spain, and Italy covering the period between 2.1 and 2.0 Ma suggest that favorable conditions for early hominin settlement (mainly savannah prairies, grassland with open forest patches) existed in southwestern Europe at least 200 ka before the first traces of Homo in Eurasia. This period also shows the arrival of taxa originating in Asia and Africa, suggesting dispersal events within southwestern Europe well before the Olduvai subchron and with no indication (as yet) of Homo as a “fellow traveler”.  相似文献   

17.
We present new 40Ar/39Ar data for sanidine and biotite derived from volcanic ash layers that are intercalated in Pliocene and late Miocene astronomically dated sequences in the Mediterranean with the aim to solve existing inconsistencies in the intercalibration between the two independent absolute dating methods. 40Ar/39Ar sanidine ages are systematically younger by 0.7-2.3% than the astronomical ages for the same ash layers. The significance of the discrepancy disappears except for the upper Ptolemais ashes, which reveal the largest difference, if an improved full error propagation method is applied to calculate the absolute error in the 40Ar/39Ar ages. The total variance is dominated by that of the activity of the decay of 40K to 40Ar (∼70%) and that the amount of radiogenic 40Arp in the primary standard GA1550 biotite (∼15%). If the 40Ar/39Ar ages are calculated relative to an astronomically dated standard, the influence of these parameters is greatly reduced, resulting in a more reliable age and in a significant reduction of the error in 40Ar/39Ar dating.Astronomically calibrated ages for Taylor Creek Rhyolite (TCR) and Fish Canyon Tuff (FCT) sanidine are 28.53±0.02 and 28.21±0.04 Ma (±1 S.E.), respectively, if we start from the more reliable results of the Cretan A1 ash layer. The most likely explanation for the large discrepancy found for the younger Ptolemais ash layers (equivalent to FCT of 28.61 Ma) is an error in the tuning of this part of the sequence.  相似文献   

18.
We present new high-precision 40Ar/39Ar ages on feldspar and biotite separates to establish the age, duration and extent of the larger Siberian Traps volcanic province. Samples include basalts and gabbros from Noril'sk, the Lower Tunguska area on the Siberian craton, the Taimyr Peninsula, the Kuznetsk Basin, Vorkuta in the Polar Urals, and from Chelyabinsk in the southern Urals. Most of the ages, except for those from Chelyabinsk, are indistinguishable from those found at Noril'sk. Cessation of activity at Noril'sk is constrained by a 40Ar/39Ar age of 250.3 ± 1.1 Ma for the uppermost Kumginsky Suite.The new 40Ar/39Ar data confirm that the bulk of Siberian volcanism occurred at 250 Ma during a period of less than 2 Ma, extending over an area of up to 5 million km2. The resolution of the data allows us to confidently conclude that the main stage of volcanism either immediately predates, or is synchronous with, the end-Permian mass extinction, further strengthening an association between volcanism and the end-Permian crisis. A sanidine age of 249.25 ± 0.14 Ma from Bed 28 tuff at the global section and stratotype at Meishan, China, allows us to bracket the P–Tr boundary to 0.58 ± 0.21 myr, and enables a direct comparison between the 40Ar/39Ar age of the Traps and the Permo–Triassic boundary section.Younger ages (243 Ma) obtained for basalts from Chelyabinsk indicate that volcanism in at least the southern part of the province continued into the Triassic.  相似文献   

19.
The Middle Pleistocene archaeological site of Guado San Nicola was discovered in 2005 in a fossil fluvial terrace of the Volturno River, close to the village of Monteroduni, Molise, Italy. Palaeontological remains and lithic artefacts, including both handaxes and Levallois, discoid and opportunistic debitage, were recovered in fluvial and slope sediments rich in volcanoclastic materials. This site includes four distinct human occupation levels. In two of them both “shaping-façonnage” and “knapping-débitage” technologies are highlighted, placing this site at the Lower/Middle Palaeolithic transition.In the present study, geochronological analyses by 40Ar/39Ar on single-crystal and ESR/U-series on teeth were performed to precise the chronological framework of the occupations. The 40Ar/39Ar data obtained securely bracket the human occupation levels at the transition between the interglacial and glacial marine isotopic stages MIS 11 (i.e. 400 ± 9 ka) and MIS 10 (i.e. 345 ± 9ka). The weighted mean age obtained from ESR/U-series dating of six teeth (i.e. 364 ± 36 ka) is in very good agreement with the 40Ar/39Ar results. The radio-isotopic constraints we presented place the Guado San Nicola site as one of the earliest testimonies of Levallois debitage in Western Europe and confirm the potential and accuracy of paleo-dosimetric methods to date Middle Pleistocene sites.  相似文献   

20.
Tephrochronology is one of the most effective ways to correlate and date Quaternary deposits across large distances. However, it can be challenging to obtain direct ages on tephra beds when they are beyond the limit of radiocarbon dating, do not contain mineral phases suitable for 40K-40Ar (or 40Ar/39Ar) dating, or suitable glass shards for fission-track dating are not available. Zircon U-Pb dating by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an emerging technique for dating young (<1 Ma) tephra. Here, we demonstrate that LA-ICP-MS zircon U-Pb dating can produce reliable ages for key tephra beds found in Yukon and Alaska. We assessed five different techniques for calculating tephra maximum depositional ages from zircon U-Pb ages for eight tephra beds. Our preferred zircon U-Pb ages (reported with 2σ uncertainties), based on a Bayesian model for calculating maximum depositional ages, are broadly consistent with previously established chronology constructed from stratigraphy, paleomagnetism, and/or glass fission track and 40Ar/39Ar ages: Biederman tephra (178 ± 17 ka), HP tephra (680 ± 47 ka), Gold Run tephra (688 ± 44 ka), Flat Creek tephra (708 ± 43 ka), PA tephra (1.92 ± 0.06 Ma), Quartz Creek tephra (2.62 ± 0.08 Ma), Lost Chicken tephra (3.14 ± 0.07 Ma), and GI tephra (542 ± 64 ka). We also present newly revised glass fission-track and 40Ar/39Ar ages recalculated from previous determinations using updated ages for the Moldavite tektite and Fish Canyon Tuff standards, and updated K decay constants. For Pleistocene age zircon crystals, corrections for 230Th disequilibrium and common-Pb are significant and must be treated with caution. Similarly, apparent tephra ages are sensitive to the choice of method used to calculate a maximum depositional age from the assemblage of individual crystallization ages. This study demonstrates that LA-ICP-MS zircon U-Pb dating can be successfully applied to numerous Pliocene-Pleistocene Alaskan-Yukon tephra, providing confidence in applying this method to other stratigraphically important tephra in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号