首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Analyses of relative P - and S -wave amplitudes of 15 selected earthquakes ( M L <2.3) from a seismic swarm, which occurred in May and June 1994 at the Eyjafjallajökull volcano in South Iceland, reveal similar radiation patterns, a thrust-type double-couple with an additional source component. All focal solutions have nearly vertical T -axes and horizontally oriented P -axes, with E-W-oriented nodal planes. The volume increase corresponding to an isotropic source component is estimated to be in the range of 24 m3. The temporal and spatial seismic pattern, small magnitude range, focal mechanisms and depth range of the Eyjafjallaökull earthquakes indicate vertical intrusion of magma into a confined region at the northern flank of the volcano.  相似文献   

2.
3.
4.
In an accompanying paper, we used waveform tomography to obtain a velocity model between two boreholes from a real crosshole seismic experiment. As for all inversions of geophysical data, it is important to make an assessment of the final model, to determine which parts of the model are well-resolved and can confidently be used for geological interpretation. In this paper we use checkerboard tests to provide a quantitative estimate of the performance of the inversion and the reliability of the final velocity model. We use the output from the checkerboard tests to determine resolvability across the velocity model. Such tests can act as good guides for designing appropriate inversion strategies. Here we discovered that, by including both reference-model and smoothing constraints in initial inversions, and then relaxing the smoothing constraint for later inversions, an optimum velocity image was obtained. Additionally, we noticed that the performance of the inversion was dependent on a relationship between velocity perturbation and checkerboard grid-size: larger velocity perturbations were better-resolved when the grid-size was also increased. Our results suggest that model assessment is an essential step prior to interpreting features in waveform tomographic images.  相似文献   

5.
6.
7.
Summary. In Part I of this paper we modelled shear-wave splitting observed in crystalline rock bordering an active, normal fault-zone at Oroville, California, with Červený's ray-tracing system applied to anisotropic heterogeneous media using Hudson's formulation of elastic constants for a medium containing aligned cracks. In Part II we use the ray-tracing results of Part I to quantitatively interpret P -wave polarization anomalies observed in the three-component seismograms recorded in the Oroville fault zone. We show that the eigenvectors of the first-order Christoffel tensor defined by the ray-tracing slowness vector and Hudson's first-order anisotropic corrections to the isotropic elastic tensor correctly account for P -wave first motion that deviates from the ray vector.  相似文献   

8.
The blockage of the L g wave by crustal barriers such as continental margins and graben structures has long been recognized as providing a very useful tool for mapping large-scale lateral crustal variations along the propagation path. Numerical simulation of L g -wave propagation in complex anelastic media using the pseudospectral method provides insight into the nature of the propagation process using both snapshots of the wavefield and synthetic seismograms. A variety of 2-D structures have been investigated, including the influence of sediments, crustal thickness and attenuation.
Thick sedimentary basins covering a graben structure can have a major influence, since they remove L g energy by generating P conversion and scattering–the principal mechanisms for strong L g attenuation across a graben. The reduction of the L g energy is reinforced by anelastic attenuation in the sediments as well as the influence of the gradually thinning crustal waveguide associated with an elevated Moho.
The extinction of L g in a sequence of explosions fired across the central graben of the North Sea can be simulated by numerical calculations for the structure derived from refraction experiments.  相似文献   

9.
10.
11.
Summary. The Green's function, in a constant gradient medium, is derived for an explosive point source, in the frequency and the time domains. The analytical dynamic ray tracing (DRT) solution is rederived with conditions stated in Part I. The Gaussian beam (GB) solution is investigated. New beam parameters and conditions are defined. Comparisons between exact and approximate solutions are undertaken.
For both methods, DRT and GB, conditions of validity are explicit and quantitative. An accuracy criterion is defined in the time domain, and measures a global relative error. The range of validity is expressed in the form of two inequalities for the dynamic ray tracing method and of five inequalities for the Gaussian beam method. Results remain accurate at ray turning points. For the types of medium considered, the breakdown of the dynamic ray tracing method is smoother and better behaved than that of Gaussian beams. As examples, a vertical seismic profiling configuration, and a shallow earthquake are modelled, using Gaussian beams.  相似文献   

12.
13.
New multichannel seismic reflection data were collected over a 565 km transect covering the non-volcanic rifted margin of the central eastern Grand Banks and the Newfoundland Basin in the northwestern Atlantic. Three major crustal zones are interpreted from west to east over the seaward 350 km of the profile: (1) continental crust; (2) transitional basement and (3) oceanic crust. Continental crust thins over a wide zone (∼160 km) by forming a large rift basin (Carson Basin) and seaward fault block, together with a series of smaller fault blocks eastwards beneath the Salar and Newfoundland basins. Analysis of selected previous reflection profiles (Lithoprobe 85-4, 85-2 and Conrad NB-1) indicates that prominent landward-dipping reflections observed under the continental slope are a regional phenomenon. They define the landward edge of a deep serpentinized mantle layer, which underlies both extended continental crust and transitional basement. The 80-km-wide transitional basement is defined landwards by a basement high that may consist of serpentinized peridotite and seawards by a pair of basement highs of unknown crustal origin. Flat and unreflective transitional basement most likely is exhumed, serpentinized mantle, although our results do not exclude the possibility of anomalously thinned oceanic crust. A Moho reflection below interpreted oceanic crust is first observed landwards of magnetic anomaly M4, 230 km from the shelf break. Extrapolation of ages from chron M0 to the edge of interpreted oceanic crust suggests that the onset of seafloor spreading was ∼138 Ma (Valanginian) in the south (southern Newfoundland Basin) to ∼125 Ma (Barremian–Aptian boundary) in the north (Flemish Cap), comparable to those proposed for the conjugate margins.  相似文献   

14.
15.
16.
We determine the 3-D shear wave speed variations in the crust and upper mantle in the southeastern borderland of the Tibetan Plateau, SW China, with data from 25 temporary broad-band stations and one permanent station. Interstation Rayleigh wave (phase velocity) dispersion curves were obtained at periods from 10 to 50 s from empirical Green's function (EGF) derived from (ambient noise) interferometry and from 20 to 150 s from traditional two-station (TS) analysis. Here, we use these measurements to construct phase velocity maps (from 10 to 150 s, using the average interstation dispersion from the EGF and TS methods between 20 and 50 s) and estimate from them (with the Neighbourhood Algorithm) the 3-D wave speed variations and their uncertainty. The crust structure, parametrized in three layers, can be well resolved with a horizontal resolution about of 100 km or less. Because of the possible effect of mechanically weak layers on regional deformation, of particular interest is the existence and geometry of low (shear) velocity layers (LVLs). In some regions prominent LVLs occur in the middle crust, in others they may appear in the lower crust. In some cases the lateral transition of shear wave speed coincides with major fault zones. The spatial variation in strength and depth of crustal LVLs suggests that the 3-D geometry of weak layers is complex and that unhindered crustal flow over large regions may not occur. Consideration of such complexity may be the key to a better understanding of relative block motion and patterns of seismicity.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号