首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Photoelectric observations of 1915 Quetzalcoatl on March 2, 1981 show that this asteroid has a rotational period of 4.9 ± 0.3 hr and a lightcurve amplitude of 0.26 magnitudes. B-V and U-B colors are found to be 0.83 ± 0.04 and 0.43 ± 0.03, respectively, consistent with Quetzalcoatl being an S-type asteroid. Additional observations from March 31, 1981 give a linear phase coefficient of 0.033 mag deg?1 and a mean B(1,0) magnitude of 20.10. The resulting estimated mean diameter for Quetzalcoatl is only 0.37 km, making it one of the smallest asteroids for which physical observations have yet been made.  相似文献   

2.
本文简要介绍了与小行星有关的一些基本知识和在小行星搜寻方面的国际进展情况 ,侧重与ASTROD项目有关的内容。并介绍了与小行星定轨有关的网络资源  相似文献   

3.
小行星族作为灾变碰撞的残留物,其基础物理性质提供了其母体以及后续演化信息.其中轨道以及自转特性分别反映了Yarkovsky效应以及Yarkovsky-O’Keefe-Radzievskii-Paddack效应(YORP效应)对于小行星族演化的影响.基于小行星光变数据库(Asteroid Lightcurve Database),通过对Flora小行星族自转速率分布进行研究,发现随着直径减小,族成员自转速率倾向于主要集中在3–5 d-1的范围内.同时,可以注意到Flora小行星族整体表现出更倾向于顺行自转状态的现象,但对于轨道半长轴小于2.2au的成员来说,其顺行自转与逆行自转状态成员数目比接近于近地小行星中顺逆行自转状态源1:3的比例;此外,对于轨道半长轴大于2.2 au且具有顺行自转状态的部分族成员,在轨道半长轴-绝对星等分布中表现出聚集现象,并在聚集区域中有9颗成员展现出类似Slivan状态特征.  相似文献   

4.
《Icarus》1986,68(2):239-251
We present ground-based thermal infrared observations of asteroids 1 Ceres and 2 Pallas made over a period of 2 years. By analysing these data in light of the recently determined occultation diameter of Ceres (933–945 km) and Pallas (538 km) and their known small-amplitude lightcurves, we have determined a new value for the infrared beaming parameter used in the “standard” thermal emission model for asteroids. The new value is significantly lower than that previously used, and when applied in the reduction of thermal infrared observations of other asteroids, should yield model diameters that are closer to actual diameters. In our formulation, we also incorporate the recently adopted IAU magnitude convention for asteroids, which uses the zero-phase magnitudes (including the opposition effect) the same as is used for satellites.  相似文献   

5.
We present near-infrared spectrometer (NIS) observations (0.8 to 2.4 μm) of the S-type asteroid 433 Eros obtained by the NEAR Shoemaker spacecraft and report results of our Hapke photometric model analysis of data obtained at phase angles ranging from 1.2° to 111.0° and at spatial resolutions of 1.25×2.5 to 2.75×5.5 km/spectrum. Our Hapke model fits successfully to the NEAR spectroscopic data for systematic color variations that accompany changing viewing and illumination geometry. Model parameters imply a geometric albedo at 0.946 μm of 0.27±0.04, which corresponds to a geometric albedo at 0.550 μm of 0.25±0.05. We find that Eros exhibits phase reddening of up to 10% across the phase angle range of 0-100°. We observe a 10% increase in the 1-μm band depth at high phase angles. In contrast, we observe only a 5% increase in continuum slope from 1.486 to 2.363 μm and essentially no difference in the 2-μm band depth at higher phase angles. These contrasting phase effects imply that there are phase-dependent differences in the parametric measurements of 1- and 2-μm band areas, and in their ratio. The Hapke model fits suggest that Eros exhibits a weaker opposition surge than either 951 Gaspra or 243 Ida (the only other S-type asteroids for which we possess disk-resolved photometric observations). On average, we find that Eros at 0.946 μm has a higher geometric albedo and a higher single-scatter albedo than Gaspra or Ida at 0.56 μm; however, Eros's single-particle phase function asymmetry and average surface macroscopic roughness parameters are intermediate between Gaspra and Ida. Only two of the five Hapke model parameters exhibit a notable wavelength dependence: (1) The single-scatter albedo mimics the spectrum of Eros, and (2) there is a decrease in angular width of the opposition surge with increasing wavelength from 0.8 to 1.7 μm. Such opposition surge behavior is not adequately modeled with our shadow-hiding Hapke model, consistent with coherent backscattering phenomena near zero phase.  相似文献   

6.
Asteroid families are the remnants of catastrophic collisions, and their fundamental physical properties provide us the information of their parent bodies and thereafter dynamical evolutions. Especially, the orbit and spin characteristics can reveal the influences of the Yarkovsky effect and the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect on the evolution of the asteroid family, respectively. Based on the Asteroid Lightcurve Database (LCDB), the spin rate distribution of the Flora asteroid family is studied, and a tendency that the spin rates of the small Flora family members concentrate primarily in the range of 3–5 d?1 is found. The analysis on the spin states of the Flora family asteroids tells that most of these asteroid family members are in the prograde spinning state. However, for the Flora family members with an orbital semi-major axis smaller than 2.2 au, the ratio between the number of prograde spinning members and that of retrograde ones is close to that of the near-Earth asteroids, namely 1 : 3. Furthermore, for those prograde spinning Flora family asteroids with an orbital semi-major axis larger than 2.2 au, a portion of them exhibit the aggregation in the distribution of orbital semi-major axis against the absolute magnitude, and in which nine members show the features similar to the Slivan state.  相似文献   

7.
A report of the detection of the C-H hydrocarbon band complex at 3.4 μm in an asteroid spectrum, by D. P. Cruikshank and R. H. Brown (1987, Science238, 183-184) is not confirmed by recent data of higher quality. Spectra of the same asteroid and six other low-albedo asteroids do not show this feature, which if present would indicate the presence of hydrocarbons and might link these asteroids with certain classes of carbonaceous meteorites.  相似文献   

8.
The problems associated with the photometry of fast-moving asteroids are discussed. The effect of noise in CCD observations on the photometric accuracy is analyzed. A photometric accuracy limitation is shown to exist for observations of asteroids, which is determined by the angular rate of the object and the ratio of the flux from the object and noise due to sky background and dark current. The effective exposure for observing a moving object is determined. The method of overlapping areas is analyzed, which is used for obtaining the lightcurves of fast-moving asteroids. This method includes the determination of the mutual magnitude differences for the entire ensemble of comparison stars, the reduction of the magnitudes of all these stars to the magnitude of one of them adopted as the primary comparison star, the determination of the magnitude of the average star on each frame of the entire series of CCD observations, and the computation of the lightcurve as the difference between the magnitude of the asteroid and that of the average star.  相似文献   

9.
Stability of Surface Motion on a Rotating Ellipsoid   总被引:2,自引:0,他引:2  
The dynamical environment on the surface of a rotating, massive ellipsoid is studied, with applications to surface motion on an asteroid. The analysis is performed using a combination of classical dynamics and geometrical analysis. Due to the small sizes of most asteroids, their shapes tend to differ from the classical spheroids found for the planets. The tri-axial ellipsoid model provides a non-trivial approximation of the gravitational potential of an asteroid and is amenable to analytical computation. Using this model, we study some properties of motion on the surface of an asteroid. We find all the equilibrium points on the surface of a rotating ellipsoid and we show that the stability of these points is intimately tied to the conditions for a Jacobi or MacLaurin ellipsoid of equilibria. Using geometrical analysis we can define global constraints on motion as a function of shape, rotation rate, and density, we find that some asteroids should have accumulation of material at their ends, while others should have accumulation of surface material at their poles. This study has implications for motion of a rover on an asteroid, and for the distribution of natural material on asteroids, and for a spacecraft hovering over an asteroid.  相似文献   

10.
The first results of the observational program devoted to simultaneous investigation of asteroid polarimetric and photometric opposition phenomena are presented. UBVRI polarimetric and V-band photometric observations of the S-type Asteroid 20 Massalia and the E-type Asteroids 214 Aschera and 620 Drakonia were carried out in 1996-1999 down to phase angles of 0.08°, 0.7°, and 1.2°, correspondingly. The S-type Asteroid 20 Massalia is characterized by the pronounced brightness opposition surge with an amplitude larger than that observed for the E-type asteroids. A sharp peak of negative polarization at small phase angles was not observed for this asteroid. The value of polarization degree at phase angle α<1° is less than 0.5% for both S and E types. The negative polarization branches of S and especially E-asteroids have an asymmetrical shape. The phase angle at which the polarization minimum occurs is close to the angle at which non-linear increase begins in the asteroid magnitude phase curves. A relation of the observed effects to the mechanism of coherent backscattering is discussed.  相似文献   

11.
Masses of 19 asteroids have been determined from the analysis of their gravitational effect on the motion of perturbed bodies. The following asteroids were selected as perturbed bodies: (1) those which had single close encounters with the perturbing asteroid; (2) those whose mean motion was in a 1 : 1 commensurability with that of the perturber and which had close or moderate recurrent encounters with the perturber. The perturber mass was determined from observations of several tens of perturbed asteroids that were selected from these two groups. The selection criterion was the error of the mass determined from observations of only one asteroid. Positional observations of the asteroids on the interval 1900–2002 were used. The masses were determined with errors by an order-half an order of magnitude smaller than the masses found. The results are compared with those of other authors.  相似文献   

12.
为更明确近地小行星撞击地球威胁的监测预警需求, 提出了"短期威胁小行星"的概念, 即未来100yr内可能对地球造成撞击威胁且等效直径大于10m的近地小行星. 以目前已发现的756颗短期威胁小行星为基础, 分析短期威胁小行星的轨道分布特点, 研究显示其与一般近地小行星的轨道分布存在差异, 短期威胁小行星的轨道半长轴更集中于1au, 轨道面更集中于黄道面. 基于近地小行星的数量模型, 初步建立了短期威胁小行星的数量估计模型, 并预估了未来100yr内存在撞击可能的短期威胁小行星的总体数量. 短期威胁小行星的特定研究对制定近地小行星搜巡监测策略有重要意义.  相似文献   

13.
Abstract— Based on reflectance spectroscopy and chemical/mineralogical remote sensing methods, it is generally assumed that asteroids are parent bodies for most meteorites reaching the Earth. However, more detailed observations indicate that differences exist in composition between asteroids and meteorites resulting in difficulties when searching for meteorite‐asteroid match. We show that among other physical parameters the magnetic susceptibility of an asteroid can be determined remotely from the magnetic induction by solar wind using an orbiting spacecraft or directly using the AC coil on the lander, or it can be measured in samples returned to the laboratory. The shape corrected value of the true magnetic susceptibility of an asteroid can be compared to those of meteorites in the existing database, allowing closer match between asteroids and meteorites. The database of physical properties contains over 700 samples and was recently enlarged with measurements of meteorites in European museums using mobile laboratory facility.  相似文献   

14.
CCD-photometry of three Jupiter Trojan asteroids were carried out to study their opposition effect. We obtained well-sampled magnitude–phase curves for (588) Achilles, (884) Priamus, and (1143) Odysseus in the maximal attainable phase angle range down to 0.1–0.2°. The magnitude–phase relations have a linear behavior in all observed range of phase angles and do not show any non-linear opposition brightening. We have not found any confident differences between phase slopes measured in B, V and R bands. The values of the measured phase slopes of Trojans are different from available data for Centaurs. They are within the range of phase slopes measured for some low-albedo main belt asteroids, also exhibit a linear behavior down to small phase angles. An absence of non-linear opposition brightening puts constraints on the surface properties of the studied objects, assuming very dark surfaces where single scattering plays dominating role.We also determined the rotation periods, amplitudes, the values of color indexes B–V and V–R, and the absolute magnitudes of these asteroids.  相似文献   

15.
For absolute magnitudes greater than the current completeness limit of H-magnitude ∼15 the main asteroid belt's size distribution is imperfectly known. We have acquired good-quality orbital and absolute H-magnitude determinations for a sample of small main-belt asteroids in order to study the orbital and size distribution beyond H=15, down to sub-kilometer sizes (H>18). Based on six observing nights over a 11-night baseline we have detected, measured photometry for, and linked observations of 1087 asteroids which have one-week time baselines or more. The linkages allow the computation of full heliocentric orbits (as opposed to statistical distances determined by some past surveys). Judged by known asteroids in the field the typical uncertainty in the (a/e/i) orbital elements is less than 0.03 AU/0.03/0.5°. The distances to the objects are sufficiently well known that photometric uncertainties (of 0.3 magnitudes or better) dominate the error budget of their derived H-magnitudes. The detected asteroids range from HR=12-22 and provide a set of objects down to sizes below 1 km in diameter. We find an on-sky surface density of 210 asteroids per square degree in the ecliptic with opposition magnitudes brighter than mR=23, with the cumulative number of asteroids increasing by a factor of 100.27/mag from mR=18 down to the mR?23.5 limit of our survey. In terms of absolute H magnitudes, we find that beyond H=15 the belt exhibits a constant power-law slope with the number increasing proportional to 100.30H from H?15 to 18, after which incompleteness begins in the survey. Examining only the subset of detections inside 2.5 AU, we find weak evidence for a mildly shallower slope for H=15-19.5. We provide the information necessary such that anyone wishing to model the main asteroid belt can compare a detailed model to our detected sample.  相似文献   

16.
A.W. Harris  J.W. Young 《Icarus》1983,54(1):59-109
Results of photoelectric lightcurve observations made during 1979 are reported. Of a total of 53 asteroids observed, reliable rotation periods are reported for 22 asteroids for which no previous values are known, 7 periods are reported which are revisions of previously reported values, and for 12 other asteroids periods are suggested which are admittedly of low reliability and those objects should be reobserved. In addition, phase relations are presented for many of the asteroids, fitted to the theoretical phase function of Lumme and Bowell (Astron. J., 86, 1705, 1981). Adopting their formalism, mean absolute magnitudes at zero phase angle, V(0°), for 52 asteroids, and values of the multiple scattering parameter, Q, for 22 asteroids are reported. For comparison purposes, the absolute magnitude, V(1,0) and the linear phase coefficient, βv, in the traditional system are computed. In the appendixes (1) the methods of observation and data reduction are discussed, which are recommended to other lightcurve observers in the hope of standardizing reporting practices as much as possible; and (2) a cumulative index of all asteroid rotation data of which the authors are aware is presented.  相似文献   

17.
As the number of observatories located on the surface of Earth is increasing largely in decades more and more photometric data of asteroids is observed to make the research about their various physical and chemical characteristics. Compared with hundreds of thousands of asteroids found up to now, rare hundreds of three-dimensional shape models of asteroids have been built from the tremendous photometric data with incessant observations, i.e. lightcurves. For some specific asteroid already with many observed lightcurves, the unceasing observation is not too much valuable, nevertheless an additional lightcurve observed in a request viewing aspect can refine the shape model and other related parameters. This article taking the asteroid (6) HEBE for example, attempts to introduce a method to make the observation plan by combining the request of the shape model and the orbital limitation of asteroids. Through analyzing the distribution of lightcurves of (6) HEBE, small cabins without any lightcurve data are found, which can be filled by new observations at some specified dates when the positions of Asteroid, Sun, Earth are limited as the request geometry.  相似文献   

18.
Asteroid sizes can be directly measured by observing occultations of stars by asteroids. When there are enough observations across the path of the shadow, the asteroid’s projected silhouette can be reconstructed. Asteroid shape models derived from photometry by the lightcurve inversion method enable us to predict the orientation of an asteroid for the time of occultation. By scaling the shape model to fit the occultation chords, we can determine the asteroid size with a relative accuracy of typically ∼10%. We combine shape and spin state models of 44 asteroids (14 of them are new or updated models) with the available occultation data to derive asteroid effective diameters. In many cases, occultations allow us to reject one of two possible pole solutions that were derived from photometry. We show that by combining results obtained from lightcurve inversion with occultation timings, we can obtain unique physical models of asteroids.  相似文献   

19.
Many asteroids with a semimajor axis close to that of Mars have been discovered in the last several years. Potentially some of these could be in 1:1 resonance with Mars, much as are the classic Trojan asteroids with Jupiter, and its lesser-known horseshoe companions with Earth. In the 1990s, two Trojan companions of Mars, 5261 Eureka and 1998 VF31, were discovered, librating about the L5 Lagrange point, 60° behind Mars in its orbit. Although several other potential Mars Trojans have been identified, our orbital calculations show only one other known asteroid, 1999 UJ7, to be a Trojan, associated with the L4 Lagrange point, 60° ahead of Mars in its orbit. We further find that asteroid 36017 (1999 ND43) is a horseshoe librator, alternating with periods of Trojan motion. This asteroid makes repeated close approaches to Earth and has a chaotic orbit whose behavior can be confidently predicted for less than 3000 years. We identify two objects, 2001 HW15 and 2000 TG2, within the resonant region capable of undergoing what we designate “circulation transition”, in which objects can pass between circulation outside the orbit of Mars and circulation inside it, or vice versa. The eccentricity of the orbit of Mars appears to play an important role in circulation transition and in horseshoe motion. Based on the orbits and on spectroscopic data, the Trojan asteroids of Mars may be primordial bodies, while some co-orbital bodies may be in a temporary state of motion.  相似文献   

20.
Photometry and thermal lightcurves of six large asteroids (1-Ceres, 2-Pallas, 3-Juno, 12-Victoria, 85-Io and 511-Davida) have been observed at 870 μm (345 GHz) using the MPIfR 19-Channel Bolometer of the Heinrich-Hertz Submillimeter Telescope. Only Ceres displayed a lightcurve with an amplitude (∼50%, peak to peak) that was significantly greater than the uncertainty in the observations. When thermal fluxes and brightness temperatures are corrected for heliocentric distance and albedo, there is a significant relation with the sub-solar latitude of the asteroid, or the local season of the asteroid. No such trend can be found between observations with solar phase angle. These results are evidence that most of the submillimeter thermal radiation is emitted from below the diurnal thermal wave. Comparing the observed trend with model output suggests that the submillimeter radiation from all the asteroids we observed is best modeled by surface material with low thermal inertia (<15 J m−2 s−0.5 K−1, consistent with mid-infrared observations of large main-belt asteroids) and a refractive index closer to unity relative to densities inferred from radar experiments, implying a veneer of material over the asteroid surface with a density less than 1000 kg m−3. More data with better signal-to-noise and aspect coverage could improve these models and constrain physical properties of asteroid surface materials. This would also allow asteroids to be used as calibration sources with accurately known and stable, broadband fluxes at long wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号