首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to address the problem of realistic assessment of groundwater potential and its sustainability, it is vital to study the recharge processes and mechanism of groundwater flow in fractured hard rocks, where inhomogeneties and discontinuities have a dominant role to play. Wide variations in chloride, δ18O and 14C concentrations of the studied groundwaters observed in space and time could only reflect the heterogeneous hydrogeological setting in the fractured granites of Hyderabad (India). This paper, based on the observed isotopic and environmental chloride variations of the groundwater system, puts forth two broad types of groundwaters involving various recharge processes and flow mechanisms in the studied granitic hard rock aquifers. Relatively high 14C ages (1300 to ~6000 yr B.P.), δ18O content (?3.2 to ?1.5‰) and chloride concentration (<100 mg/l) are the signatures that identified one broad set of groundwaters resulting from recharge through weathered zone and subsequent movement through extensive sheet joints. The second set of groundwaters possessed an age range Modern to ~1000 yr B.P., chloride in the range 100 to ~350 mg/l and δ18O from ?3.2 to +1.7‰. The δ18O enrichment and chloride concentration, further helped in the segregation of the second set of groundwaters into three sub-sets characterized by different recharge processes and sources. Based on these processes and mechanisms, a conceptual hydrogeologic model has evolved suggesting that the fracture network is connected either to a distant recharge source or to a surface reservoir (evaporating water bodies) apart from overlying weathered zone, explaining various resultant groundwaters having varying 14C ages, chloride and δ18O concentrations. The surface reservoir contribution to groundwater is evaluated to be significant (40 to 70%) in one subset of groundwaters. The conceptual hydrogeologic model, thus evolved, can aid in understanding the mechanism of groundwater flow as well as migration of contaminants to deep groundwater in other fractured granitic areas.  相似文献   

2.
Geologically complex crystalline aquifers underlie large parts of the semi-arid Limpopo Province where some of the greatest groundwater needs in South Africa occur. It is important to identify potentially high-yielding zones that can be targeted for water supply. The study covered four distinct geologic and morpho-structural domains within Limpopo Province, together covering about 23,500?km2. Results from over 2,500 pumping test analyses indicate that bedrock type (e.g. pegmatite), lithological setting (e.g. aureole of granitoids), proximity and orientation of dykes and lineaments, topographic setting (e.g. slopes or valleys) and proximity of surface-water drainages may exert an influence on borehole productivity. No correlation between borehole productivity and weathering depth was found. Lineaments and dykes striking perpendicular to the current maximum horizontal stress seem to be more favourable targets, which is inconsistent with the predicted regime. Due to the complex geologic history, it is difficult to link open discontinuities to a distinct recent or past tectonic event. Regional stress-field data, as in this case, may not account for local, possibly highly significant, stress-field variations. The hydrogeologic importance of several factors related to groundwater occurrence, here presented, can be used as a working reference for future groundwater development programmes.  相似文献   

3.
Moore  J. P.  Walsh  J. J. 《Hydrogeology Journal》2021,29(8):2613-2632

Faults and fractures are a critical store and pathway for groundwater in Ireland’s limestone bedrock aquifers either directly as conductive structures or indirectly as the locus for the development of karst conduits. From the quantitative analysis of post-Devonian faults and fractures in a range of lithological sequences, this report describes the principal characteristics of Cenozoic strike-slip faults and joints, the youngest and the most intrinsically conductive fractures within Irish bedrock. Analysis of these structures in more than 120 outcrop, quarry, mine and cave locations in a range of bedrock types, provides a basis for: (1) definition of quantitative models for their depth dependency, lithological control, scaling systematics and links to preexisting structure, (2) conceptualisation of their impact on groundwater behaviour, and (3) estimation of groundwater flow parameters. The quantitative models provide constraints on fracture-controlled flow connectivity. Commonly observed decreases in sustainable flows and water strike interceptions with depth are attributed to increasing confinement and decreasing fracture connectivity and dissolution. Faults and joints have quite different end member geometries, with faults having strongly heterogeneous scale-independent properties and joints more often showing scale-dependent stratabound properties. The highest and most sustainable groundwater flows are usually associated with the complexity of structure of Cenozoic faults and of preexisting Carboniferous structures (on which conductive fracturing localises), enhanced by karstification and strongly jointed limestone bedrock particularly in the near-surface. Increased groundwater flow is promoted within bedded, rather than massive (i.e. unbedded), limestone sequences, characterised by bedding-parallel fractures and karst connecting otherwise subvertical fractures and subvertical wells.

  相似文献   

4.
Natural recharge due to rainfall (annual average 1,200 mm) over an area of 1,500 km2 of the Neyveli groundwater basin was carried out for two consecutive hydrological years, using the tritium injection technique. The lignite seams, occurring within the Upper Miocene formation in the basin have been mined for the last 40 years. The confined aquifer underlying the lignite seams has been pumped continuously since 1961, for depressurization and safety around the mine. The recharge zone is identified as an elongated zone, oriented in a NE–SW direction within the basin. Natural recharge measurements were made at several sites (single and duplicate injections), covering the entire basin. They indicate a recharge rate of 333–556 mm/year (24–40% of rainfall) in the north and northeastern parts, covering the previously defined recharge areas as well as some adjoining areas. Soil moisture movement at several duplicate sites in these areas showed significant downward migration of tracer during the non-monsoon period, probably caused by pumping in the mine area. Isotopic data of ground water samples in the northern and northeastern part of the basin indicates modern ages. Concurrent field observations like deep water table with high annual fluctuations and exposure of pebble beds, enabled the redemarcation of the aggregate recharge area as 650 km2. The redefined recharge area includes the areas identified by earlier workers as well as the new area on the northeastern side of the lignite mine.  相似文献   

5.
Received: 15 June 1999 · Accepted: 30 August 1999  相似文献   

6.
An investigation was conducted in Beijing to identify the groundwater evolution and recharge in the quaternary aquifers. Water samples were collected from precipitation, rivers, wells, and springs for hydrochemical and isotopic measurements. The recharge and the origin of groundwater and its residence time were further studied. The groundwater in the upper aquifer is characterized by Ca-Mg-HCO3 type in the upstream area and Na-HCO3 type in the downstream area of the groundwater flow field. The groundwater in the lower aquifer is mainly characterized by Ca-Mg-HCO3 type in the upstream area and Ca-Na-Mg-HCO3 and Na-Ca-Mg-HCO3 type in the downstream area. The δD and δ18O in precipitation are linearly correlated, which is similar to WMWL. The δD and δ18O values of river, well and spring water are within the same ranges as those found in the alluvial fan zone, and lay slightly above or below LMWL. The δD and δ18O values have a decreasing trend generally following the precipitation → surface water → shallow groundwater → spring water → deep groundwater direction. There is evidence of enrichment of heavy isotopes in groundwater due to evaporation. Tritium values of unconfined groundwater give evidence for ongoing recharge in modern times with mean residence times <50 a. It shows a clear renewal evolution along the groundwater flow paths and represents modern recharge locally from precipitation and surface water to the shallow aquifers (<150 m). In contrast, according to 14C ages in the confined aquifers and residence time of groundwater flow lines, the deep groundwater is approximately or older than 10 ka, and was recharged during a period when the climate was wetter and colder mainly from the piedmont surrounding the plain. The groundwater exploitation is considered to be “mined unsustainably” because more water is withdrawn than it is replenished.  相似文献   

7.
Groundwater recharge and base flow using different investigated methods are simulated in the 15-ha Bukmoongol small-forested watershed located at the southern part of Korea. The WHAT system, PART, RORA, PULSE, BFI, and RAP software are used to estimate groundwater recharge or base flow and base flow index from the measured streamflow. Results show that about 15–31 per cent of annual rainfall might be contributed for base flow. The watershed groundwater recharge proportions are computed to about 10–21 per cent during the wet period and 23–32 per cent for the remainder periods. Mean annual base flow indices vary from 0.25 to 0.76 estimated using different methods. However, the study found out that all methods were significantly correlated with each other. The similarity of various methods is expressed as a weighted relationship provided by the matrix product from the principal component analysis. Overall, the BFI and WHAT software appeared consistent in estimating recharge or base flow, and base flow index under Korea’s conditions. The case study recommends the application of different models to other watersheds as well as in low-lying areas where most observation groundwater wells are located with available streamflow data.  相似文献   

8.
The groundwater wells in the Ramtha region of Jordan are tapping three aquifers: the upper, intermediate and deep aquifers. The upper aquifer groundwater is tritiated and its stable isotopic composition varies over a wide range. This signifies short residence times and local recharge from an elevation around 600 m above sea level. The groundwater of the upper aquifer has an elevated level of , which is attributed to anthropogenic sources. The intermediate and deep aquifers are untritiated and have long residence times. The stable isotope results signify a recharge elevation for the intermediate aquifer higher than that for the upper aquifer. Stable isotopes in groundwater from both aquifers clustered along the eastern meteoric water line and demonstrate association with the dominant climate of Jordan. The groundwater of the intermediate aquifer is classified as Ca2+- , which reflects circulation through a carbonate aquifer. There is evidence that leakage from the upper aquifer has influenced the isotopic and chemical makeup of the groundwater in an intermediate aquifer well. The groundwater of the deep aquifer has the highest temperature in the basin and its isotopic composition is much more depleted than both the upper and intermediate aquifers and plots on the global meteoric water line.
Résumé  Les puits de la région de Ramtha en Jordanie captent trois aquifères : les aquifères supérieur, intermédiaire et profond. L’eau de l’aquifère supérieur est tritiée et sa composition en isotopes stables varie dans un large intervalle. Ceci signifie des temps de séjour courts et une recharge locale à une altitude d’environ 600 mètres au-dessus du niveau de la mer. L’eau de l’aquifère supérieur a une teneur en élevée, qui est attribuée à des origines anthropiques. Les aquifères intermédiaire et profond ne sont pas tritiés et ont des temps de séjour longs. Les valeurs des isotopes stables indiquent une altitude de recharge pour l’aquifère intermédiaire plus élevée que pour l’aquifère supérieur. Les isotopes stables de l’eau des deux aquifères groupés le long de la droite des eaux météoriques orientale démontrent une relation avec le climat prédominant en Jordanie. L’eau de l’aquifère intermédiaire est de type Ca2+-, ce qui traduit une circulation dans un aquifère carbonaté. Il est évident qu’un apport de l’aquifère supérieur a influencé la composition isotopique et chimique da l’eau d’un puits dans l’aquifère intermédiaire. L’eau de l’aquifère profond a la température la plus élevée dans le bassin et sa composition isotopique est bien plus déprimée que dans les deux aquifères supérieur et intermédiaire et se situe sur la droite globale de l’eau météorique.

Resumen  Las perforaciones en la región de Ramtha de Jordania atraviesan tres acuíferos: los acuíferos superior, intermedio y profundo. El agua del acuífero superior contiene tritio y su composición isotópica varía en un rango amplio. Esto se interpreta como aguas de corto período de residencia recargadas localmente en una zona elevada a unos 600 m sobre el nivel del mar. El agua del acuífero superior posee elevadas concentraciones de , de origen antropogénico. Las aguas de los acuíferos intermedio y profundo no contienen tritio y su período de residencia es largo. Los resultados de las concentraciones de isótopos estables sugieren que la recarga del acuífero intermedio proviene de alturas mayores que las correspondientes al acuífero superior. Los datos de isótopos estables de ambos acuíferos se agrupan a lo largo de la Línea Meteórica Este, y demuestra su asociación con el clima predominante en Jordania. El agua subterránea del acuífero intermedio se clasifica como Ca2+-, lo que refleja su circulación a través de un acuífero carbonático. Hay evidencias que las filtraciones desde el acuífero superior han influenciado las características químicas e isotópicas del acuífero intermedio. Las aguas del acuífero profundo son las de mayor temperatura en la cuenca, su composición isotópica es más reducida que aquella de los acuíferos superior e intermedio, y su posición gráfica se aproxima a la Línea Meteórica Mundial.
  相似文献   

9.
Widespread agricultural activity may threaten water quality in fractured bedrock aquifers having little overburden protection. A study in Canada improves the understanding of the potential impact of agriculture on water quality in bedrock aquifers, focusing on spatial and temporal variability of nitrate and bacteria. A research site was developed in and adjacent to a hay field where a gneissic aquifer is overlain by a thin veneer of unconsolidated glacial material. Ten wells were installed, hydraulically tested and completed as multilevel piezometers. Results of monthly sampling for nitrate, dissolved organic carbon, and E. coli show significant temporal and spatial variation in concentrations. Intensive 5-day sampling rounds conducted during baseflow and recharge conditions indicate that bacterial concentrations vary daily, with higher concentrations during recharge periods. The location of the impacted monitoring wells is correlated to an upgradient cattle pasture that is used periodically each summer. It is evident that periodic upgradient sources, dilution from recharge, and heterogeneous flow systems lead to varied and unpredictable contaminant concentrations. The temporal and spatial variability of contaminants in bedrock aquifers with minimal overburden must be considered for the protection of human health, as annual or even monthly groundwater monitoring may not capture unsafe concentrations.  相似文献   

10.
The Nyamandhlovu aquifer is the main water resource in the semi-arid Umguza district in Matebeleland North Province in Zimbabwe. The rapid increase in water demand in the city of Bulawayo has prompted the need to quantify the available groundwater resources for sustainable utilization. Groundwater recharge estimation methods and results were compared: chloride mass balance method (19–62 mm/year); water-table fluctuation method (2–50 mm/year); Darcian flownet computations (16–28 mm/year); 14C age dating (22–25 mm/year); and groundwater modeling (11–26 mm/year). The flownet computational and modeling methods provided better estimates for aerial recharge than the other methods. Based on groundwater modeling, a final estimate for recharge (from precipitation) on the order of 15–20 mm/year is believed to be realistic, assuming that part of the recharge water transpires from the water table by deep-rooted vegetation. This recharge estimate (2.7–3.6% of the annual precipitation of 555 mm/year) compares well with the results of other researchers. The advantages/disadvantages of each recharge method in terms of ease of application, accuracy, and costs are discussed. The groundwater model was also used to quantify the total recharge of the Nyamandhlovu aquifer system (20?×?106–25?×?106 m3/year). Groundwater abstractions exceeding 17?×?106 m3/year could cause ecological damage, affecting, for instance, the deep-rooted vegetation in the area.  相似文献   

11.
The present study deals with the hydrochemical characteristics of groundwater in the upper catchment of Wadi Fatimah basin. The analysis of data indicated strongly that the chloride and sulfate in the groundwater are mainly of marine origin, concentrated by high evaporation processes. Flushing is the most important factor that modifies the ionic concentrations and almost stands for the short-term variation in groundwater chemistry. Weathering reactions of the rock-forming minerals take place under relatively high PCO2 condition in water and soil zone; it can be an important long-term neutralization process. It is accounted as a contributor for Ca and Mg ions in the groundwater. Using the chloride method the recharge rate has been estimated at 72 mm yr–1.  相似文献   

12.
In recent years, the mountain springs in the bedrock mountainous area of Hebei are decreasing in terms of both quantity and flow rate, which have affected the domestic water and production water supply for people in this area, due to which driven wells have been built with the expectation to relieve the problem. However, this work doesn’t achieve much success due to the complex geological conditions in the bedrock mountainous area and tends to cause huge economic losses. In order to improve the success rate of this work, the authors of this paper made a summary about the type of reservoir structure, water storage conditions and characteristics, by drawing experience from the former practices of digging wells in the mountainous area of Hebei to search for water to relieve drought in 2011, referring to the research results about bedrock summarized by former researchers, employing the reservoir structure theory and by considering the stratum condition of the bedrock mountain area of Hebei. Based on the summary, the authors figure out the major reservoir structure and water research methods for mountainous regions where have metamorphic rocks, carbonate rocks and volcanic rocks distributed, which may offer some valuable guidance to future water researches in the bedrock mountainous area of Hebei  相似文献   

13.
14.
15.
The St. Lawrence Lowlands platform, Quebec, Canada, is a densely-populated area, heavily dependent on groundwater resources. In 1999, the Geological Survey of Canada initiated a large-scale hydrogeological assessment study over a 1,500 km2 region northwest of Montreal. The objectives were to define the regional groundwater flow, and to give quantitative estimates of the groundwater dynamic parameters and of the available groundwater resources. The applied approach consisted of defining the hydrogeologic framework, hydraulic properties of the aquifer units, and groundwater dynamic components. Lower Paleozoic sedimentary rocks represent regional aquifer units. Coarse Quaternary fluvio-glacial sediments locally overlay the rock sequence and constitute an interface aquifer unit. Fine marine sediments confine most of the regional aquifers. Collected GIS based information was synthesized in a finite element numerical model. The regional saturated steady-state flow was calibrated under current stress conditions assuming an equivalent porous medium approach. Water budget calculations show that the total groundwater flow in regional aquifers amounts to 97.7 Mm3/y. Infiltration from precipitation provides 86.6% of the groundwater supply, while 9.6% comes from subsurface inflow and the remaining 3.8% is induced recharge from surface waters. Discharge from regional aquifers occurs through flow to streams (76.9%), groundwater withdrawal (18.4%), and underground outflow (4.7%).
Resumen La plataforma de Tierras Bajas San Lorenzo, Quebec, Canadá, es un área densamente poblada que depende fuertemente de recursos de agua subterránea. En 1999 el Servicio Geológico de Canadá inició un estudio de evaluación hidrogeológica a gran escala sobre un área de 1,500 km2 en la región noroeste de Montreal. Los objetivos fueron definir el flujo regional de agua subterránea y aportar estimados cuantitativos de los parámetros dinámicos de agua subterráne y de los recursos disponibles de agua subterránea. El enfoque aplicado consistió en definir el marco hidrogeológico, propiedades hidráulicas de las unidades acuíferas, y los componentes dinámicos de agua subterránea. Rocas sedimentarias del Paleozoico Inferior representan unidades regionales de acuíferos. Sedimentos fluvio-glaciares Cuaternarios gruesos sobreyacen localmente la secuencia rocosa y constituyen una unidad acuífera interfacial. Sedimentos marinos finos confinan la mayoría de acuíferos regionales. Información colectada basada en SIG se sintetizó en un modelo numérico de elemento finito. El flujo regional saturado en régimen permanente se calibró bajo condiciones de stress asumiendo un enfoque de medio poroso equivalente. Los cálculos de balance hídrico muestran que el flujo total de agua subterránea en acuíferos regional alcanza 97.7 Mm3/año. Infiltración a partir de lluvia aporta el 86.6% del abastecimiento al agua subterránea, mientras que el 9.6% proviene de entradas subsuperficiales y el restante 3.8% consiste de recarga inducida a partir de aguas superficiales. La descarga proveniente de acuíferos regionales ocurre a través de flujo a ríos (76.9%), utilización de agua subterránea (18.4%), y salida subterránea (4.7%).

Résumé La plateforme Lowllands du Saint-Laurent, Québec, Canada, est une aire densément peuplée, dépendant grandement des ressources en eau souterraine. En 1999, le Service Géologique du Canada a initié une étude hydrogéologique à grande-échelle sur 1500 km2 au Nord-Ouest de Montréal. Le sobjectifs ont été de définir la dynamique de lécoulement régional, et de donner des estimations quantitatives des paramètres dynamiques des ressources disponibles en eau souterraine. Lapproche utilisée consista à définir le cadre hydrogéologique de travail, les propriétés hydrauliques des unités aquifères, et les composantes dynamiques des eaux souterraines. Les roches sédimentaires du Paléozoïque Inférieur représentent les unités aquifères régionales. Les sédiments marins fins confinent la plus grande partie des aquifères régionaux. Les informations de base, collectées dans un SIG, ont été synthétisées dans un modèle numérique aux éléments finis. Lécoulement permanent régional, en zone saturée, a été calibré en conditions de stress en assumant une approche de milieu poreu équivalent. Les calculs du bilan hydrologique montrent que lécoulement total des eaux souterraines dans les aquifères régionaux atteind 97,7 Mm3/an. Linfiltration à partir des précipitations apporte 86.6% de leau souterraine exploitée; sachant que 9,6% proviennent découlement de subsurfaces, et que les 3,8% restants proviennent de la recharge via les eaux de surface. Le débit pompé des aquifères régionaux apparaît à travers lécoulement des cours deau, le rabattement des eaux souterraines (18.4%), et lécoulement ascendant (4.7%).
  相似文献   

16.
岛屿是我国领土的重要组成部分,对国家安全和国防军事意义非凡.岛屿的地下水资源尤为珍贵,地下水流场模拟是研究地下水分布规律的重要手段.水文地质条件复杂、可利用的观测井较少等原因,造成了基岩岛屿水文地质模型概化精度不高、初始条件难以获取等问题.为克服基岩岛屿地下水流场模拟的诸多困难,将珠海外伶仃岛作为研究区,利用数字高程模型数据开展地质地貌建模;利用探地雷达法、直流电法与地质分析对岛屿进行探测,获取了地层数据;采用地下水遥感评估法,利用实测井位数据,确定了地下水的初始水位,进而对基岩岛屿地下水流场进行建模;最终,通过对外伶仃岛地下水流场的数值模拟得出地下水模拟流场图.岛上多个测点的探测水位值与模拟水位相关性较好,其拟合优度R2为0.8722.由此可见,综合遥感、物探、水文地质手段等技术方法获取的数据,采用地下水模拟软件或程序实现基岩岛屿地下水流场的数值模拟,是基岩岛屿地下水资源研究的一个有效方法.  相似文献   

17.
18.

There is a scarcity of long-term groundwater hydrographs from sub-Saharan Africa to investigate groundwater sustainability, processes and controls. This paper presents an analysis of 21 hydrographs from semi-arid South Africa. Hydrographs from 1980 to 2000 were converted to standardised groundwater level indices and rationalised into four types (C1–C4) using hierarchical cluster analysis. Mean hydrographs for each type were cross-correlated with standardised precipitation and streamflow indices. Relationships with the El Niño–Southern Oscillation (ENSO) were also investigated. The four hydrograph types show a transition of autocorrelation over increasing timescales and increasingly subdued responses to rainfall. Type C1 strongly relates to rainfall, responding in most years, whereas C4 notably responds to only a single extreme event in 2000 and has limited relationship with rainfall. Types C2, C3 and C4 have stronger statistical relationships with standardised streamflow than standardised rainfall. C3 and C4 changes are significantly (p <?0.05) correlated to the mean wet season ENSO anomaly, indicating a tendency for substantial or minimal recharge to occur during extreme negative and positive ENSO years, respectively. The range of different hydrograph types, sometimes within only a few kilometres of each other, appears to be a result of abstraction interference and cannot be confidently attributed to variations in climate or hydrogeological setting. It is possible that high groundwater abstraction near C3/C4 sites masks frequent small-scale recharge events observed at C1/C2 sites, resulting in extreme events associated with negative ENSO years being more visible in the time series.

  相似文献   

19.
Influences of hydraulic conductivity (K) heterogeneities on bedrock groundwater (BG) flow systems in mountainous topography are investigated using a conceptual 2D numerical modelling approach. A conceptual model for K heterogeneity in crystalline bedrock mountainous environments is developed based on a review of previous research, and represents heterogeneities due to weathering profile, bedrock fracture characteristics, and catchment-scale (~0.1–1 km) structural features. Numerical groundwater modelling of K scenarios for hypothetical mountain catchment topography indicates that general characteristics of the BG flow directions are dominated by prominent topographic features. Within the modelled saturated BG flow system, ~90 % or more of total BG flux is focussed within a fractured bedrock zone, extending to depths of ~100–200 m below the ground surface, overlying lower-K bedrock. Structural features and heterogeneities, represented as discrete zones of higher or lower K relative to surrounding bedrock, locally influence BG flow, but do not influence general BG flow patterns or general positions of BG flow divides. This result is supported by similar BG transit-time distribution shapes and statistics for systems with and without structural features. The results support the development of topography-based methods for predicting general locations of BG flow-system boundaries in mountain regions.  相似文献   

20.
Rapid population growth in sub-Saharan West Africa and related cropland expansion were shown in some places to have increased focused recharge through ponds, raising the water table. To estimate changes in diffuse recharge, the water content and matric potential were monitored during 2009 and 2010, and modeling was performed using the Hydrus-1D code for two field sites in southwest Niger: (1) fallow land and (2) rainfed millet cropland. Monitoring results of the upper 10 m showed increased water content and matric potential to greater depth under rainfed cropland (>2.5 m) than under fallow land (≤1.0 m). Model simulations indicate that conversion from fallow land to rainfed cropland (1) increases vadose-zone water storage and (2) should increase drainage flux (~25 mm year?1) at 10-m depth after a 30–60 year lag. Therefore, observed regional increases in groundwater storage may increasingly result from diffuse recharge, which could compensate, at least in part, groundwater withdrawal due to observed expansion in irrigated surfaces; and hence, contribute to mitigate food crises in the Sahel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号