首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The specific energy (SE) is the most important parameter to estimate the energy consumption in tunnel boring machines (TBMs). It is defined as the amount of required energy to excavate a unit volume of rock mass which used to predict the performance of TBMs. Several models are used to estimate the SE based on different parameters such as the rock mass properties, disc cutter dimensions and cutting geometry. The aim of this work is to propose new relations between the SE and the strain energy of rock mass (W) using the geological mappings of rock mass and TBM operational parameters from Amir-Kabir Water Transferring Tunnel of Iran. W is an appropriate criterion to estimate SE because it is a function of different parameters such as rock mass behavior, pre and post failure properties and peak and residual strains. In this study, to increase the correlation coefficient of relation between the mentioned parameters, the rock mass is classified in two methods, in the first method according to the geological strength index (GSI) all data is classified in three classes such as weak, fair and good and in the second method using the drop to deformation modulus ratio (η) the classification of data is performed in three classes such as η < 0.05, 0.05 ≤ η < 10 and η ≥ 10. The results show that there are direct relations between both parameters. It is suggested to estimate SE in all rock mass classes using the proposed relations based on GSI classification.  相似文献   

3.
Prediction of hollows in abandoned underground workings at shallow depth   总被引:1,自引:1,他引:0  
Composite statistical analysis of the lithological composition of the rock mass above underground workings in coal seams and experimental work (laboratory mechanical tests and boring for the determination of hollows) in Donetsk city (Ukraine) have been used to develop a method for predicting the presence of hollows. The empirical criteria K1–K2>0 and K32.5 which relate to the physical characteristics of the overlying strata were found to predict the existence of such hollows in abandoned underground workings at shallow depth. The values of K1–K2 and K3 depend on the thicknesses of the different rock layers and the uniaxial compressive strength of the immediate roof over underground openings. The different layers e.g. sandstones, argillites, aleurolites and alluvium in the rock mass are shown to influence the existence of hollows in abandoned workings. Large thicknesses of sandstones in the rock mass or relatively high uniaxial compressive strength rock in the immediate roof contribute to the existence of hollows in abandoned workings. On the other hand, sandstones of small thickness, weak alluvium, argillites and aleurolites only give additional weight on immediate roof of the opening and allow collapse of the rock mass. The method of prediction for hollows was developed from the back-analysis of data from 41 boreholes which were drilled from the ground surface above underground openings.  相似文献   

4.
验证了显示有限差分方法进行地震波衍射分析的可行性,并基于此方法分别建立了二维(2D)及三维(3D)数值模型,对溪洛渡地下洞室群的地震安全性进行了分析与讨论。研究表明,在唐山余震天津医院地震波作用下洞室群处于安全状态。对比2D及3D数值计算结果可以发现,2D数值模型计算效率远远高于3D数值计算模型;对于建造于完整性较好、强度较高的岩体介质中地下洞室群而言,可以采用2D数值模型粗略估算洞身部分的地震响应,而洞室端面的动力响应则必须通过建立3D模型来进行分析。  相似文献   

5.
不同倾角节理组和锚固效应对岩体特性的影响   总被引:1,自引:0,他引:1  
王文  朱维申  马海萍  张磊 《岩土力学》2013,34(3):887-893
首先采用DDARF(discontinuous deformation analysis for rock failure)分析方法对双裂隙岩块进行单轴和双轴压缩模拟试验,研究了裂隙角度和侧向应力大小对岩块特性的影响,得到了裂隙岩块在这两种加载试验中的破坏过程、应力-应变曲线以及岩块中裂隙的起裂应力和岩块的峰值强度。在双轴压缩模拟试验中绘制了裂隙角度为45°的岩块在不同侧向压力下的强度包络线。其次,采用DDARF分析方法模拟劈裂试验中含裂隙试块的锚固效果,得到了4种不同锚固角度试块的轴向荷载–位移变化曲线和裂隙扩展规律。模拟结果与前人的类似条件下的试验结果相符良好。随后又将双裂隙试块双轴压缩模拟试验中得到的参数运用到一个地下洞室的工程实例中,用等效力学特性的方法分析对比了完整岩体和节理岩体洞室开挖完成后的破损状态的差异。最后运用DDARF分析方法研究了随机生成4组节理岩体的地下洞室的稳定性,得到了洞室节理围岩的裂隙扩展过程。同时通过对关键点位移的监测分析了锚杆的锚固效应。  相似文献   

6.
Rock burst is a complex dynamic process can lead to casualties, to failure and deformation of the supporting structures, and to damage of the equipment on site; hence, its prediction is of great importance in underground construction. We present a novel empirical method to predict rock burst based on the theory of logistic regression classifiers. An extensive database collected from the literature, which includes observations about rock burst occurrence (or not) in underground excavations in projects from all over the world, is used to train and validate the model. The proposed approach allows us to compute new class separation lines (or planes) to estimate the probability of rock burst, using different combinations of five possible input parameters—tunnel depth, H; maximum tangential stress, MTS; elastic energy index, W et; uniaxial compressive strength of rock, UCS; uniaxial tensile strength of rock, UTS—among which it was found that the preferable model could be developed in HW et–UCS space. The proposed model is validated with goodness-of-fit tests and nine-fold cross-validation; results show that its predictive capability compares well with previously proposed empirical methods and confirm that, as expected, the probability of rock burst increases with excavation depth, and that both W et and UCS have a similarly significant influence on rock burst occurrence. Finally, expressions are proposed for identification of conditions associated with several reference values of rock burst probability, which can be employed in preliminary risk analyses.  相似文献   

7.
Accurate laboratory measurement of geo-engineering properties of intact rock including uniaxial compressive strength (UCS) and modulus of elasticity (E) involves high costs and a substantial amount of time. For this reason, it is of great necessity to develop some relationships and models for estimating these parameters in rock engineering. The present study was conducted to forecast UCS and E in the sedimentary rocks using artificial neural networks (ANNs) and multivariable regression analysis (MLR). For this purpose, a total of 196 rock samples from four rock types (i.e., sandstone, conglomerate, limestone, and marl) were cored and subjected to comprehensive laboratory tests. To develop the predictive models, physical properties of studied rocks such as P wave velocity (Vp), dry density (γd), porosity, and water absorption (Ab) were considered as model inputs, while UCS and E were the output parameters. We evaluated the performance of MLR and ANN models by calculating correlation coefficient (R), mean absolute error (MAE), and root-mean-square error (RMSE) indices. The comparison of the obtained results revealed that ANN outperforms MLR when predicting the UCS and E.  相似文献   

8.
A general approach to rock engineering designing aspects adopted at the Khiritharn Pumped Storage Scheme is described. The scheme involves excavation of three large caverns and tunnels in jointed sandstone within a suture zone in Southeast Thailand. Geological condition and engineering properties of the sandstone were investigated. Strength and modulus properties of the intact rock were determined from laboratory tests and properties of rock mass were empirically estimated for the design analysis in the de.nite study stage on the basis of three rock mass classi.cation systems namely the Rock Mass Rating (RMR), Geological Strength Index (GSI) and a Japanese system (EPDC). While the GSI gives strength and modulus of deformation values slightly higher than the RMR classi.cation, the EPDC gives a lower value of modulus of deformation but comparable rock mass strength value for the level of con.ning pressures at the depth of the cavern excavation. The results of stress analysis and loosening wedge analysis for the cavern excavations suggest favorable excavation condition.  相似文献   

9.
Study of intact rock failure criteria is an important topic in rock mechanics. In this study, applicability of nine different intact rock failure criteria is investigated for intact coal strength data. PFC3D modeling was used to simulate the laboratory polyaxial tests for cubic intact coal blocks of side dimension 110 mm under different confining stress combinations. A modified grid search procedure is proposed and used to find the best-fitting parameter values and to calculate the coefficient of determination (R 2) values for each criterion. Detailed comparisons of the nine criteria are made using the following aspects: R 2 values, σ 1 ? σ 2 plots for different σ 3, shapes on the deviatoric plane, linearity or nonlinearity on the meridian planes. Through the comparisons of R 2 values, σ 1 ? σ 2 plots and meridian lines, the modified Wiebols–Cook and modified Lade criteria were found to fit the intact coal strength data best. The nine failure criteria are categorized into three types based on the appearances on the deviatoric plane.  相似文献   

10.
Back analysis of a large landslide in a flysch rock mass   总被引:1,自引:1,他引:0  
Flysch is a sedimentary rock consisting of a rhythmic alternation of hard (limestone, sandstone, siltstone) and weak (marl, mudstone, claystone) layers. Because of the presence of layers with different physical properties, the mechanical characterization of heterogeneous rock masses such as flysch is a real challenge. Different methods have been proposed in the literature to characterize flysch, combining empirical classification indexes with laboratory tests. Most of these methods, however, were specifically designed for tunneling and underground excavations, and their applicability to slope stability problems is not yet fully investigated. In this study, we analyze a large landslide in a cretaceous flysch rock in order to compare the mobilized strength at failure with those predicted by the modified GSI method (Marinos and Hoek, 2001). The landslide occurred in the Savena River basin (Northern Apennines of Italy) on April 6, 2013, with a volume of about 3 million m3. Soon after the failure, geological, geotechnical, and geophysical investigations were carried out to detect the failure mechanism and define the landslide geometry. Back analyses of the failed slope were performed using both limit equilibrium and finite difference methods to estimate the in situ strength of the flysch. The results show that the mobilized rock mass cohesion is very low (c '?≈?20?÷?40 kPa) and that the modified GSI method can predict the in situ strength only assuming a disturbance factor D = 1. Moreover, the analysis shows that the linearization criteria proposed in literature to compute the equivalent Mohr-Coulomb parameters remarkably overestimate the rock mass strength.  相似文献   

11.
The basic quality (BQ) system is regarded as the national rock mass classification system that can be appropriate for use in most types of rock engineering in China. Two underlying parameters that the uniaxial compressive strength (UCS) and the rock intactness index (KV) are taken into account to access the basic BQ value. However, The KV was usually measured by an indirect acoustic wave approach which often cannot reflected the actual conditions. In this study, a direct measured parameter KGSI is recommended to obtain by means of the GSI system to replace the original KV, and a new method [BQ]GSI expressed by the new parameter KGSI is proposed. In particular, a graphic method is also presented to determine rapidly and rationally the rock mass classification by the X, Y coordinates of the UCS and the KGSI. In order to further compare the evaluation results and application effects between the [BQ]GSI and the international rock mass classification systems, a comprehensive solution is carried out. First, the evaluation factors of rock mass qualities from all these system are classified according to three groups: the rock mass inherent parameters, external parameters, and construction parameters. Second, the correlations among these evaluation factors in the new [BQ]GSI system and the common international systems (i.e. RMR, Q, and RMi) were compared. And the formulas or charts among the three groups are presented. Finally, five hydropower underground excavations are chosen to analysis the comparison results of the [BQ]GSI system and the international common RMR, Q, or RMi systems. The applicability scope of these international RMR, Q, or RMi systems is also discussed in the context of China’s rock characteristics and geological stress conditions.  相似文献   

12.
Particle flow code (PFC2D) software was adopted to investigate the anchorage behaviour and the characteristics of crack initiation, propagation and coalescence of reinforced specimens containing a single fissure (RSCSF). The microscopic parameters of the specimens in the numerical simulation were first validated by experimental outcomes of intact specimens, while the microscopic parameters of the rock bolts were validated based on the results of the RSCSF tests. Then, the mechanical parameters as well as the failure modes in the physical experiments were compared with those derived by the numerical simulation; the results showed good agreement between the simulated macroscopic mechanical properties and failure modes and those obtained in the laboratory experiments. The peak strength, number of cracks and the failure mode varied considerably as the anchorage angle α and fissure angle β increased. Three types of stress–strain curves, types I to III, were obtained from the RSCSF. Shear cracks were observed for all three categories of curves, but the tensile cracks were dominant. The number of cracks and the rate of bond failures decreased as the curve changed from type II to type I to type III. RSCSF failure can be classified into three failure modes: (1) tip crack propagation mode, (2) midpoint crack propagation mode and (3) rock bolt crack propagation mode. These failure modes are primarily differentiated by relations between α and β, and the ratio UCSS/UCSI between the uniaxial compressive strength (UCS, σ max) of the RSCSF (UCSS) and the uniaxial compressive strength of the intact specimen (UCSI).  相似文献   

13.
Petrophysical evaluation and rock physics analysis are the important tools to relate the reservoir properties like porosity, permeability, pore fluids with seismic parameters. Nevertheless, the uncertainties always exist in the quantification of elastic and seismic parameters estimated through wireline logs and rock physics analysis. A workflow based on statistical relationships of rock physics and logs derived elastic and seismic parameters with porosity and the percentage error exist between them is given. The statistical linear regressions are developed for early Eocene Chorgali Formation between various petrophysically factors determined from borehole logging of well Ratana–03 drilled in tectonically disturbed zone and the seismic and elastic parameters estimated through rock physics modeling. The rock physics constraints such as seismic velocities, effective density and elastic moduli calculated from Gassmann fluid substation analysis are in harmony and close agreement to those estimated from borehole logs. The percentage errors between well logs and rock physics computed saturated bulk modulus (K sat ), effective density (ρ eff ), compressional and shear wave velocities (V P and V S) are 1.31%, 4.23 %, 5.25% and 4.01% respectively. The permeability of reservoir intervals show fairly strong linear relationship with the porosity, indicating that the reservoir interval of the Chorgali Formation is permeable and porous thus having large potential of hydrocarbon accumulation and production.  相似文献   

14.
山西西龙池抽水蓄能电站地下厂房围岩为水平薄层岩层,工程竣工发电已多年,施工及运行期安全,但工程开工前,还没有在水平薄层岩体中开挖大跨度高边墙地下洞室的成功范例,鉴于此,以山西西龙池抽水蓄能电站工程为依托,从工程地质角度,对水平薄层围岩岩性特征、岩体结构特征、岩体力学特性、大跨度高边墙地下洞室围岩分类、围岩变形特征等方面进行了研究,依据研究成果,对洞室开挖支护施工、围岩变形监测等进行了分析,依据围岩变形监测成果对围岩力学参数进行了反演,验证了前期勘察成果,取得了在水平薄层状地质环境中开挖大型地下洞室的宝贵经验,进而为在水平薄层状地质体中修建大跨度、高边墙地下洞室提供了更多的技术支持,对此类不良地质条件下大型地下洞室群建设具有重要的指导意义。  相似文献   

15.
A detailed engineering geological assessment of low strength (6–35 MPa) anisotropic rocks at an ongoing Hydroelectric Project in the Himalayan Region has been carried out. The project (the Nathpa Jhakri Hydroelectric Project) will have one of the world's largest and longest water conducting systems, consisting of a 10.15 m diameter and 27.3 km long head race tunnel, a 942 000 m3 underground desilting complex and a 20 × 49 × 216 m powerhouse cavern in the area. Because these constructions are made in low strength metamorphosed anisotropic rocks like quartz mica schists, biotite schists and muscovite schists, it seemed necessary and worthwhile to undertake a comprehensive study of such rocks. The studies include petrographic and petrofabric analyses of the rocks, geo-mechanical properties, rock stress measurements, rock mass classification using the Q-System and data concerning joint geometry, joint roughness and joint strength. The use of mapped geological and geotechnical data along with the experimental and modelling studies have helped to better understand the behaviour of these rocks in underground openings.  相似文献   

16.
基于未确知测度理论的地下洞室岩体质量评价   总被引:3,自引:0,他引:3  
唐海  万文  刘金海 《岩土力学》2011,32(4):1181-1185
将未确知测度理论与关联函数相结合,用于地下洞室岩体质量评价。根据地下洞室岩体质量的影响因素和分级标准,运用未确知测度理论建立了地下洞室岩体质量评价指标的未确知测度函数,用关联函数确定评价指标的权重,依据置信度识别准则对地下洞室岩体质量进行评价,并结合实例进行了对比分析。研究结果表明,该方法评价过程合理、结果可靠,为地下洞室岩体质量评价提供了一种新方法。  相似文献   

17.
围岩质量分级的模糊综合评判研究   总被引:2,自引:0,他引:2  
岩体本身具有许多不确定性和随机性,围岩质量分级取决于许多因素。选择岩石单轴饱和抗压强度Re、岩体完整程度(RQD)、平均节理裂隙间距d、不连续面状态系数f、结构面方位φ以及地下水状态w六个指标,采用模糊数学方法,引入模糊数学隶属函数的概念,建立边坡岩体质量综合评判模型,并将其应用于黄河上游某电站引水隧洞围岩岩体质量评价。评判结果显示,该模型使用模糊综合评价的评价结果与现场定性判断及报告中RMR分类结果基本一致。  相似文献   

18.
The objective of this study was to evaluate the effect of mine tailings composition on shear behavior and shear strength of co-mixed mine waste rock and tailings (WR&T). Crushed gravel was used as a synthetic waste rock and mixed with four types of tailings: (1) fine-grained garnet, (2) coarse-grained garnet, (3) copper, and (4) soda ash. Co-mixed WR&T specimens were prepared to target mixture ratios of mass of waste rock to mass of tailings (R) such that tailings “just filled” interparticle void space of the waste rock (i.e., optimum mixture ratio, R opt). Triaxial compression tests were conducted on waste rock, tailings, and mixed waste at effective confining stresses (\(\sigma_{\text{c}}^{{\prime }}\)) ranging from 5 to 40 kPa to represent stresses anticipated in final earthen covers for waste containment facilities. Waste rock and co-mixed WR&T specimens were 150 mm in diameter by 300 mm tall, whereas tailings specimens were 38 mm in diameter by 76 mm tall. Shear strength was quantified using effective stress friction angles (?′) from undrained tests: ?′ for waste rock was 37°, ?′ for tailings ranged from 34° to 41°, and ?′ for WR&T mixtures ranged from 38° to 40°. Thus, shear strength of co-mixed WR&T was comparable to waste rock regardless of tailings composition. Shear behavior of WR&T mixtures was a function of R and tailings composition. Tailings influenced shear behavior for R < R opt and when tailings predominantly were silt. Shear behavior was influenced by waste rock for R ≥ R opt and when tailings predominantly were sand or included clay particles.  相似文献   

19.
There are many rock mass classification schemes which are frequently used for different purposes such as estimation of strength and deformability of rock masses, stability assessment of rock slopes, tunneling and underground mining operations etc. The rock mass classification includes some inputs obtained from intact rock and discontinuity properties which have major influence on assessment of engineering behaviour of rock mass. In the present study, detail measurements were employed on road cuts slope faces in Garhwal Himalayas to collect required data to be used for rock mass classification of Rock Mass Rating (RMR) and Geological Strength Index (GSI). The stability assessment of rock slopes were also done by using Slope Mass Rating. In addition the relation between RMR and GSI were also evaluated using 50 data pairs.  相似文献   

20.
A steeply dipping orebody, having decreasing width with depth has been modeled considering horizontal cut and fill method of stoping at four different depth levels. The focus of the study is to identify and understand the behavior of crown and sill pillars in terms of varying stress and geo-mining conditions without reinforcement using finite element method. Analysis of stresses, displacements and extent of yield zones around the excavation is carried out by varying the rock mass conditions such as geological strength index, uniaxial compressive strength (UCS or σ ci), modulus of elasticity (E), and thickness of crown and sill pillars (T). These analyses have been conducted based on 135 non-linear numerical models considering Drucker–Prager material model in plane strain condition. Results of the study provide valuable insight into the stress concentration factors of the pillars highlighting stress distributions, roof convergence, yield zones and support requirements. Finally, it suggests the optimum thickness of crown and sill pillar with varying thickness of orebody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号