首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 64 毫秒
1.
采用2009年和2010年2月中旬雪深、分层积雪密度、含水率和温度野外调查数据,分析了北疆地区积雪参数属性特征,雪深-温度和密度-含水率关系。①雪深达10cm,雪土界面温度比积雪表面高3℃左右,超过10cm,偏高6~10℃;雪土界面温度与积雪深度高度线性相关,积雪越深,保温作用越显著;②2010年1月以来,北疆地区多降雪天气,2月积雪深度比2009年同期雪深明显增加;③2010年2月,北疆地区积雪密度均值总体范围0.15~0.272 g/cm3比2009年同期积雪密度0.087~0.225 g/cm3偏大;④在一定体积含水率间隔范围,积雪密度和体积含水率间线性相关。  相似文献   

2.
近40年北疆年积雪日数变化的CEOF分析   总被引:8,自引:2,他引:8  
通过1961—2001年间北疆年积雪日数的CEOF分析,研究了40年来北疆年降雪日数的时空变化特点。结果表明:北疆年积雪日数场有波动特征。第一种类型为南—北一致偏多(偏少)型,空间位相相近,并有6.4年和3.6年的周期。第二种类型为西南—东北一致偏多(偏少)型,空间位相相近,并有6.4年的周期。第一复主分量的时间位相和第二复主分量的时间振幅峰值年可用于年积雪日数的预测。  相似文献   

3.
利用黑龙江省1961-2008年积雪初日、终日、最大积雪深度资料,采用统计方法分析了黑龙江省积雪时空变化特征。结果显示:黑龙江省积雪初日明显推迟,速率为2.5 d/10 a;终日明显提前,速率为1.6 d/10 a;最大积雪深度明显减少,速率为1.1 cm/10 a。  相似文献   

4.
雷俊  方之芳 《高原气象》2008,27(1):58-67
应用青海44个台站1962—2005年逐月积雪深度和积雪日数资料,对比了这两份常规积雪资料在表征青海地区积雪变化特征上的一致性,并对近十几年来的积雪变化新趋势做了分析。结果表明:积雪深度和积雪日数均能比较一致地反映整个青海地区积雪变化趋势:夏、秋季积雪从20世纪60年代至21世纪初为一致的减少趋势;冬、春季积雪在20世纪60年代至90年代初增加,而从20世纪90年代中期至21世纪初积雪呈显著减少趋势。后期的减少趋势远比前期的增加趋势明显。青海地区不同季节积雪深度和积雪日数趋势变化明显的区域基本一致,但中心位置存在一定的差异。冬季在32.5°~35°N,95°~102°E范围内的唐古拉山、巴颜喀拉山和阿尼玛卿山区,春季在青海东南部阿尼玛卿山区附近,均明显地表现出20世纪90年代中期以后积雪的减少和前期积雪的增加。不同季节积雪深度和积雪日数的相关系数分布存在一定差异:冬季两份资料相关相对较小的区域位于青海中南部巴颜喀拉山西区至阿尼玛卿山西区一线;春季相关系数小于冬季,青海东北边缘以及东南边缘地区,相关系数未能通过95%信度检验;夏、秋季积雪较少,相关较小的区域集中在青海东南部地区。而上述区域大多为各个季节积雪较多的地区,应慎重使用该区域的常规积雪资料。综合分析两份积雪资料,确定青海地区冬季多雪年为1964,1975,1993,1995和1998年,少雪年为1963,1965,1969,1997和2003年;春季多雪年是1977,1982,1987,1989和1990年,少雪年是1969,1979,1985,1999和2001年。  相似文献   

5.
东北及邻近地区累积积雪深度的时空变化规律   总被引:6,自引:0,他引:6  
陈光宇  李栋梁 《气象》2011,37(5):513-521
利用东北及邻近地区1960-2006年123个地面测站逐日积雪观测资料和同时期气象要素资料,采用面积权重、EOF、小波分析和功率谱方法分析了东北全年及各季节累积积雪深度的时空变化特征,结果表明:近50年来东北及邻近地区累积积雪呈缓慢增加趋势,具体到各个季节上,秋季积雪趋势基本稳定,冬季积雪显著增加,春季积雪显著减少,年...  相似文献   

6.
基于1961-2006年全疆32个测站的逐日积雪深度资料,使用一元线性回归和二项式滑动平均等统计方法,分析了北疆区域积雪开始时间、积雪结束时间、相对积雪期和绝对积雪期的时空变化特征。结果表明,积雪开始时间、结束时间、相对积雪期和绝对积雪期存在明显的区域差异,前3种差异主要是由地形高度变化引起的。积雪开始时间和相对积雪期各测站基本呈上升和下降趋势,积雪结束时间和绝对积雪期趋势变化的空间分布较为类似,伊犁河谷地区呈明显的下降趋势。1995年以后,积雪开始时间呈上升趋势,而积雪结束时间、相对积雪期和绝对积雪期均呈下降趋势。相关分析和合成分析表明,积雪开始时间和相对积雪期及绝对积雪期存在较好的负相关关系,可以通过积雪开始时间的早晚,大致预测相对积雪期和绝对积雪期的长短。  相似文献   

7.
<正>1月31日至2月9日,乌鲁木齐沙漠气象研究所组织了2009—2010年冬季北疆积雪情况调查工作。重点调查了阿勒泰地区富蕴、布尔津、吉木乃县和阿勒泰市以及塔城地区裕民和托里两县及北疆沿天山一线共18个区域积雪覆盖情  相似文献   

8.
9.
为对陇海线和京广线提速160—250 km速度段最大风速和最大积雪深度的气候可行性进行论证,根据从建站到2006年陇海—京广线沿线12个气象观测站历年最大风速和最大积雪深度资料,利用Gumbel分布、Weibull分布和Gamma分布对各站最大风速和最大积雪深度的重现期进行了分析。结果表明:陇海线和京广线交叉点上的郑州气象观测站年最大风速具有极为显著的线性下降趋势,每10 a风速减小2.85 m/s;年最大积雪深度没有明显的线性趋势,以波动变化为主。各站年最大风速和最大积雪深度均具有明显的阶段性变化特征。无论是年最大风速,还是年最大积雪深度,多不能拒绝其服从Gumbel、Weibull和Gamma分布的假设,但以Weibull分布形态为主,服从Gumbel分布形态的只有商丘和虞城2站的最大风速及许昌、中牟、开封和兰考4个气象观测站的最大积雪深度。百年一遇的年最大风速多在20.00 m/s以上,最大值为郑州的26.79 m/s;最大积雪深度则均在21.90 cm以上,最大值同样出现在郑州,最大积雪深度为30.83 cm。  相似文献   

10.
选取阿尔山气象站1981—2015年冷季(10月—次年4月)气象资料,利用滑动平均、线性倾向估计和Mann-Kendall等方法,对年最大积雪深度、积雪日数、气温和降水量进行分析。结果表明,阿尔山地区年最大积雪深度主要发生在1月至3月,其中2月份概率最大,达50%;34 a内最大积雪深度呈上升趋势(2.77 cm/10a),年平均增加0.98%,且年最大积雪深度在1998年发生了突变,即在1998年之前增长缓慢,在2000年以后上升趋势显著。积雪日数的统计分析表明,初始积雪日数和有效积雪日数呈现略微减少趋势,而稳定积雪日数有微弱的增加趋势;通常初始积雪日数比有效积雪日数大30天左右。年最大积雪深度与稳定积雪时期的降水量、积雪日数、日照时数有显著的相关性,相关系数分别为0.647、0.515、0.584,但与稳定积雪时期的气温没有明显的相关性。在全球变暖的大环境下,积雪深度随着降水量和日照时数的增加而增加,且积雪深度受降水量的影响大于日照时数的影响。  相似文献   

11.
1988~1998年北半球积雪时空变化特征分析   总被引:17,自引:0,他引:17  
杨修群  张琳娜 《大气科学》2001,25(6):757-766
利用NOAA提供的北半球近10年(1988~1998)逐周雪盖观测资料,通过引入年或季节累积雪盖周数作为对雪量累积情况的定量衡量,对北半球雪盖变化时空特征进行了分析。结果表明:近10年来,北半球积雪年际变化的关键区位于青藏高原、蒙古高原、欧洲阿尔卑斯山脉及北美中西部,其中青藏高原是北半球积雪异常变化最强烈的区域。青藏高原和欧亚大陆其他地区积雪变化的关联表现为两种不同的时空变化型,第一种型表现为青藏高原地区和其他地区(如欧洲、俄罗斯远东地区)积雪的同位相趋势性增多;第二种型表现为青藏高原地区和中亚地区积雪变化同位相,而和蒙古高原-我国东北地区积雪变化反位相的年际振荡。  相似文献   

12.
新疆雪盖特征分析   总被引:7,自引:1,他引:7  
研究和论述了新疆雪盖的若干特征,在利用NOAA/AVHRR监测了1990年9月至2000年6月新疆积雪的基础上,绘制了新疆13个地州(区)的10年旬平均积雪盖度变化曲线,并就各地的雪盖特征、雪盖增长和衰减模型进行了讨论,建立了北疆6个地州(区)雪盖的气温、降水复合模型。  相似文献   

13.
北半球积雪监测诊断业务系统   总被引:1,自引:0,他引:1  
郭艳君  李威  陈乾金 《气象》2004,30(11):24-26
利用卫星遥感和常规观测的积雪资料,确定了适合业务使用的北半球及中国积雪监测诊断方法,并初步建立了北半球和中国积雪监测业务。其相关业务产品主要有:北半球月积雪日数、中国月积雪日数、积雪深度的分布,北半球、欧亚、中国等不同区域积雪面积距平指数。  相似文献   

14.
青藏高原积雪日数的气温敏感度分析   总被引:5,自引:0,他引:5       下载免费PDF全文
根据青藏高原气象台站观测积雪日数和均一化气温数据,对高原1951—2004年积雪日数对气温的敏感度进行了量化分析。研究表明,无论是极值敏感度还是当前气候下的敏感度,空间上都呈现出高原四周积雪较中部对气温的敏感程度高的情况。各台站积雪日数对气温最敏感时的临界气温与海拔有着极好的反相关关系,而极值敏感度与海拔虽然也有一定的反相关,但相关程度远不如前者高。在当前气候状态下,有相当一部分台站的平均气温还未达到临界值,这些台站在秋、冬、春、夏季分别占总台站数的36%、39%、47%和11%。未来气候继续变暖背景下,这部分台站积雪日数对气温的敏感度会进一步加大,即积雪对气温的升高会更加敏感。  相似文献   

15.
青藏高原积雪监测在地球辐射平衡、全球气候变化和生态环境等方面有重要作用,对气候预测、雪灾预测等具有重要意义。FY-4(风云4号)卫星数据具有高时空分辨率的优势,基于FY-4A(风云4号A星)构建积雪监测方法与模型,不仅拓展了静止卫星应用领域,也丰富了积雪监测应用的手段。FY-4的高时间分辨率为积雪监测的研究提供了分钟级数据,对积雪与云的变化掌握的更为细致,但用于积雪监测的波段,因分辨率不高容易导致错判与漏判。本文基于2020年小时级野外地面雪深观测数据、风云3号D星积雪覆盖产品(FY-3D_SNC)数据,构建了基于归一化积雪指数(Normalized Difference Snow Index,NDSI)的FY-4A卫星积雪判识方法,提出了雪深监测模型与等级划分指标。结果表明:NDSI≥0.20是青藏高原地区FY-4A卫星积雪判识的适用阈值,无论有云或无云条件,其漏判率均低于8.0%。地面站点验证结果表明,积雪判识准确率达83.33%以上。空间范围内直接剔除云区后,积雪判识经混淆矩阵验证准确率在82.48%以上。因此,FY-4A卫星在青藏高原地区具有积雪监测的能力。虽然FY-4A卫星对超过10 cm以上雪深不具备区分能力,但可以较好地识别10 cm以下浅雪雪深,相关系数达到0.745,通过了0.001显著性水平检验。据此建立的FY-4A卫星0~10 cm雪深等级指标,总体分级精度达到87.50%。FY-4A卫星雪深反演方法在青藏高原地区对0~10 cm浅雪雪深有较好的估算能力。  相似文献   

16.
运用气候统计学方法,分析了精—伊—霍铁路沿线雪害严重区域的气象条件,推算了对铁路工程设计和运营极为重要的最大风速设计极值和最大积雪深度设计值。  相似文献   

17.
利用1971—2020年呼伦贝尔市16个国家气象站最长积雪日数和最大积雪深度资料,采用经验正交函数(EOF)分析、重标极差分析(R/S)和非周期循环分析,统计最长积雪日数和最大积雪深度时间序列的Hurst指数、分维数和非周期循环的平均循环长度,分析最长积雪日数和最大积雪深度变化趋势和记忆周期;同时采用MOD10A2积雪产品,研究2001—2018年呼伦贝尔市积雪覆盖率变化。结果表明:(1)近50年呼伦贝尔市最长积雪日数呈递减趋势,最大积雪深度呈递增趋势;(2)积雪深度>20、30cm的年平均积雪日数主要出现在1996—2014年,其中积雪深度>30cm年平均积雪日数>1d;(3)呼伦贝尔市积雪初日出现在10月中旬至11月上旬,积雪终日在4月结束,积雪初日出现最早时间和积雪终日结束最晚时间都在呼伦贝尔市的北部地区;(4)R/S分析和非周期循环研究表明,呼伦贝尔市最长积雪日数和最大积雪深度H指数分别为0.589 9和0.889,即最长积雪日数未来减少和最大积雪深度未来增多趋势持续,持续时间分别为8和12 a;(5)呼伦贝尔市年平均积雪覆盖率为98.87%,呈波动增加趋势,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号