首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Since 2006, systematic double-station photographic observations of fireballs using all-sky cameras equipped with Zeiss Distagon “fisheye” objectives (f/3.5, f = 30 mm) with a 180° field of view have been carried out at two observatories, Gissar (GisAO) and Sanglokh (IAOS), of the Institute of Astrophysics of the Tajik Academy of Sciences. In the method of astrometric reduction of fireball photographs, the empirical formulae for converting the measured coordinates to horizontal celestial coordinates are used. These formulae contain 12 unknown constants to be determined by the least-squares method and the iteration method. Such an approach enables the determination of the coordinates of an object at any point of the celestial hemisphere with a precision close to the theoretical limit whose value is quite comparable with the measurement errors. In the photometric reduction, the dependence of the measured width of the diurnal star trails on their magnitudes was used. As a result of astrometric and photometric reduction of the double-station photographs of five fireballs, the data on atmospheric trajectories, the coordinates of radiants, orbits in interplanetary space, light curves, and photometric masses of meteoroids which produced fireballs were obtained, and the belonging of fireballs to the known meteor showers was determined as well.  相似文献   

2.
The existence of asteroidal meteoroid streams capable of producing meteorite-dropping bolides has long being invoked, but evidence is scarce. Recent modelling of previously reported associations suggests that the time-scales to keep the orbital coherence of these streams producing meteorites are too short. We present an unequivocal association between near earth object (NEO) 2002NY40 and at least one bright fireball detected over Finland in 2006 August. Another two additional fireballs recorded from Spain and Finland seem to be related, together producing a fireball-producing stream (β Aquarids). On the basis of historical data, the 2006 finding suggests the existence of a meteoroid complex capable of producing meteorites. Taking into account present time-scales for orbital decoherence, if 2002NY40 has large meteoroids associated with it, such behaviour would be the consequence of a relatively recent asteroidal fragmentation. Supporting our claim, the heliocentric orbits of two recently discovered NEOs, 2004NL8 and 2002NY40, were found to exhibit a good similarity to each other and also to the orbits of the three bolides. The fireball spectra of the two Finish bolides showed that the chemical abundances of these objects are consistent with the main elements found in chondrites. This result is consistent with the probable Low iron, Low metal (LL) chondritic mineralogy of asteroid 2002NY40. Consequently, this asteroid may be delivering LL chondrites to the Earth. Additional fireball reports found in the literature suggest that the associated β Aquarid complex may have been delivering meteorites to the Earth during, at least, the last millennium.  相似文献   

3.
Abstract— In the early morning hours of December 13, 2002, a bright Geminid fireball with an absolute magnitude of ?9.2 ± 0.5 was observed from Southern Saskatchewan, Canada. The fireball displayed distinct small‐scale oscillations in brightness, or flickering, indicative of the parent meteoroid being both non‐spherical and rotating. Using the light curve derived from a calibrated radiometer, we determine a photometric mass of 0.429 ± 0.15 kg for the meteoroid, and we estimate from its initial rotation rate of some 6 Hz that the meteoroid was ejected from the parent body (3200) Phaethon some 2500 ± 500 years ago. We find that 70% of Geminid fireballs brighter than magnitude ?3 display distinct flickering effects, a value that is in stark contrast to the 18% flickering rate exhibited by sporadic fireballs. The high coincidence of flickering and the deep atmospheric penetration of Geminid fireballs are suggestive of Geminid meteoroids having a highly resilient structure, a consequence, we suggest, of their having suffered a high degree of thermal processing. The possibility of Gemind material surviving atmospheric ablation and being sampled is briefly discussed, but the likelihood of collecting and identifying any such material is admittedly very small.  相似文献   

4.
The results of observations of the Orionid meteor shower are given in the period from 2006 to 2008. Observations were carried out using a highly sensitive camera FAVOR (FAst Variability Optical Registrator) a limiting magnitude of above +11.0m (for stars) and a field of view of 18° × 20°. Over the period of the shower from October 2 to November 7, 2006–2008, there were 3713 meteors. 449 of these meteors were associated with the Orionid meteor shower. The distributions of Orionid meteors by the stellar magnitude is presented. It turned out that most of meteors (65%) of this shower have a brightness of +5.0m-+7.0m. On each night of observation the index of meteor activity was calculated for Orionids.  相似文献   

5.
Abstract— The L6 ordinary chondrite Villalbeto de la Peña fall occurred on January 4, 2004, at 16: 46: 45 ± 2 s UTC. The related daylight fireball was witnessed by thousands of people from Spain, Portugal, and southern France, and was also photographed and videotaped from different locations of León and Palencia provinces in Spain. From accurate astrometric calibrations of these records, we have determined the atmospheric trajectory of the meteoroid. The initial fireball velocity, calculated from measurements of 86 video frames, was 16.9 ± 0.4 km/s. The slope of the trajectory was 29.0 ± 0.6° to the horizontal, the recorded velocity during the main fragmentation at a height of 27.9 ± 0.4 km was 14.2 ± 0.2 km/s, and the fireball terminal height was 22.2 ± 0.2 km. The heliocentric orbit of the meteoroid resided in the ecliptic plane (i = 0.0 ± 0.2°), having a perihelion distance of 0.860 ± 0.007 AU and a semimajor axis of 2.3 ± 0.2 AU. Therefore, the meteorite progenitor body came from the Main Belt, like all previous determined meteorite orbits. The Villalbeto de la Peña fireball analysis has provided the ninth known orbit of a meteorite in the solar system.  相似文献   

6.
Abstract– We report an analysis of instrumental observations of a very bright fireball which terminated with a meteorite fall near the town of Jesenice in Slovenia on April 9, 2009, at 0h59m46s UT. The fireball designated EN090409 was recorded photographically and photoelectrically by two southern stations of the Czech part of the European Fireball Network (EN). Simultaneously, a part of the luminous trajectory was also captured by two all‐sky CCD systems and one video camera of the Slovenian meteor network. In addition to these optical recordings, the sonic booms produced by the Jesenice fireball were detected at 16 seismic stations located within 150 km of the trajectory. From all these records, we reconstructed the fireball’s atmospheric trajectory, basic geophysical data, the possible impact area, and the original heliocentric orbit of the meteoroid. Using a detailed fireball light curve, we modeled the atmospheric fragmentation of the meteoroid. Both the atmospheric behavior and the heliocentric orbit proved to be quite normal in comparison with other observed meteorite falls. The Jesenice orbit is markedly different from the P?íbram and Neuschwanstein orbital meteorite pair, which fell on similar dates (April 7, 1959, and April 6, 2002, respectively). Three meteorites with a total weight of 3.6 kg (until April 2010) were found in a high mountain area near the town of Jesenice. They are classified as L6 ordinary chondrites ( Bischoff et al. 2010 ).  相似文献   

7.
Three bright fireballs belonging to the August θ‐Aquillid (ATA) meteor shower were photographed by the Tajikistan fireball network in 2009. Two of them are classified as the meteorite‐dropping fireballs according to the determined parameters of the atmospheric trajectories, velocities, masses, and densities. Detection of the more dense bodies among cometary meteoroids points to a heterogeneous composition of the parent comet, and supports the suggestion that some meteorites might originate in the outer solar system, in the given case from the Jupiter‐family comet reservoir. A search for the stream's parent was undertaken among the near‐Earth asteroids (NEAs); as a result, the asteroid 2004MB6 was identified as a possible progenitor of the ATA meteoroid stream. Investigation of the orbital evolution of the 2004MB6 and the fireball‐producing meteoroid TN170809A showed that both objects have similar secular variations in the orbital elements during 7 kyr. The comet‐like orbit of the 2004MB6 and its association with the ATA shower suppose a cometary origin of the asteroid.  相似文献   

8.
9.
Using high-resolution, low-scan-rate, all-sky CCD cameras and high-level CCD video cameras, the SPanish Meteor and fireball Network (SPMN) recorded the 2007 κ Cygnid fireball outburst from several observing stations. Here, accurate trajectory, radiant and orbital data obtained for the κ Cygnid meteor are presented. The typical astrometric uncertainty is 1–2 arcmin, while velocity determination errors are of the order of 0.3–0.6 km s−1, though this depends on the distance of each event to the station and its particular viewing geometry. The observed orbital differences among 1993 and 2007 outbursts support the hypothesis that the formation of this meteoroid stream is a consequence of the fragmentation of a comet nucleus. Such disruptive process proceed as a cascade, where the break up of the progenitor body leads to produce small remnants, some fully disintegrate into different clumps of particles and other remaining as dormant objects such as 2008ED69, 2001MG1 and 2004LA12 which are now observed as near-Earth asteroids. In addition to the orbital data, we present a unique spectrum of a bright  κ  Cygnid fireball revealing that the main rocky components have chondritic abundances, and estimations of the tensile strength of those fireballs that exhibited a catastrophic disruption behaviour. All this evidence of the structure and composition of the κ Cygnid meteoroids is consistent with being composed by fine-grained materials typically released from comets.  相似文献   

10.
The results of the atmospheric trajectory, radiant, heliocentric orbit, and preliminary strewn field calculations for an extremely bright slow‐moving fireball are presented. In the evening hours of July 23, 2008, a bright object entered Earth's atmosphere over Tajikistan. The fireball had a ?20.3 maximum absolute magnitude and a spectacularly long persistent dust trail remained visible over a widespread region of Tajikistan for about 28 minutes after sunset. The fireball was also recorded by a visible‐light satellite system at 14 h 45 min 25 s UT, and the dust trail was imaged by video and photocameras. A unique aspect of this event is that it was detected by two infrasound and five seismic stations too. The bolide was first recorded at a height of 38.2 km, reached its maximum brightness at a height of 35.0 km, and finished at a height of 19.6 km. The first breakup occurred under an aerodynamic pressure of approximately 1.6 MPa, similar to the values derived for breakups of the scarcely reported meteorite‐dropping bolides. The fireball's trajectory and dynamic results suggest that meteorite survival is likely. The meteoroid followed an Apollo‐like asteroid orbit comparable to those derived for previously recovered meteorites with accurately known orbits.  相似文献   

11.
Abstract– The fall of the Berduc meteorite took place on April 7, 2008, at 01 h 02 min 28 s ± 1 s UTC. A daylight fireball was witnessed by hundreds of people from Argentina and Uruguay, and also recorded by an infrasound array in Paraguay. From the available data, the fireball trajectory and radiant have been reconstructed with moderate accuracy. The modeled trajectory was tested to fit the infrasound and strewn field data. From the computed apparent radiant α = 87 ± 2° and δ = ?11 ± 2° and taking into account a range of plausible initial velocities, we obtained a range of orbital solutions. All of them suggest that the progenitor meteoroid originated from the main asteroid belt and followed an orbit of low inclination. Based on petrography, mineral chemistry, magnetic susceptibility, and bulk chemistry, the Berduc meteorite is classified as an L6 ordinary chondrite.  相似文献   

12.
Visual Orionid meteor data dating back to 1944 were transformed into the standard format of the Visual Meteor Data Base (VMDB) of the International Meteor Organization (IMO) for systematic analysis. The strong 2006 Orionid return with a very low population index (r = 1.6) and a peak ZHR of 60 (about 2.5 of the average peak strength) resembled meteor showers connected with the returns of resonant meteoroids. An investigation of data dating back to 1928 yielded similar rate enhancements in 1936, further supporting the assumption that meteoroids trapped in the 1:6 resonance with Jupiter caused the unusual 2006 Orionid return.  相似文献   

13.
Jack D. Drummond 《Icarus》1982,49(1):143-153
A compilation of theoretical meteor radiants is presented for all numbered (through 2525) asteroids which approach the Earth's orbit to within 0.20 AU. On the basis of orbital similarity, asteroids associated with current meteor streams and Prairie Network fireballs are listed; plausible associations with medieval fireball radiants are also given. The best defunct comet candidates in terms of meteoric evidence appear to be 2101 Adonis and 2201 1947XC. Asteroids which may be either extinct comets or perturbed main belt asteroids accompanied by collisional debris (represented by fireballs) are 1917 Cuyo, 2202 Pele, 2061 Anza, and 2340 Hathor. 1566 Icarus and 1981 Midas are the only asteroids whose orbits approach to less than 0.07 AU of the Earth's orbit, have a northern radiant, and still show no certain meteoric activity. The majority of Atens, Apollos, and Amors do not pass sufficiently close (<0.07 AU) to the Earth's orbit for a reasonable expectation of meteoric activity, or have radiants south of ?20° declination, requiring southern hemisphere observations.  相似文献   

14.
We propose that the Taurid meteor shower may contain bodies able to survive and be recovered as meteorites. We review the expected properties of meteorite‐producing fireballs, and suggest that end heights below 35 km and terminal speeds below 10 km s?1 are necessary conditions for fireballs expected to produce meteorites. Applying the meteoroid strength index (PE criteria) of Ceplecha and McCrosky (1976) to a suite of 33 photographically recorded Taurid fireballs, we find a large spread in the apparent meteoroid strengths within the stream, including some very strong meteoroids. We also examine in detail the flight behavior of a Taurid fireball (SOMN 101031) and show that it has the potential to be a (small) meteorite‐producing event. Similarly, photographic observations of a bright, potential Taurid fireball recorded in November of 1995 in Spain show that it also had meteorite‐producing characteristics, despite a very high entry velocity (33 km s?1). Finally, we note that the recent Maribo meteorite fall may have had a very high entry velocity (28 km s?1), further suggesting that survival of meteorites at Taurid‐like velocities is possible. Application of a numerical entry model also shows plausible survival of meteorites at Taurid‐like velocities, provided the initial meteoroids are fairly strong and large, both of which are characteristics found in the Taurid stream.  相似文献   

15.
We present a method to calculate the radiation pressure force to gravity ratio on meteoroids from their atmospheric flight. Radiation pressure corrections to meteor orbits are negligible for fireballs; of the order of or less than the measurement errors (≈ 1%) for photographic meteors; of the order of and in some cases substantially larger than the measurement errors (≈ 10%) for radar meteors.  相似文献   

16.
Abstract— Terminal bursts and fragmentations of meteoritic fireballs in the atmosphere may now be accurately located in four dimensions (three spatial + temporal) using seismic arrival times of their acoustic waves recorded by seismometer, camera, microphone, and/or infrasound stations on the ground. A computer program, SUPRACENTER, calculates travel times by ray tracing through realistic atmospheres (that include winds) and locates source positions by minimization of travel time residuals. This is analogous to earthquake hypocenter location in the solid Earth but is done through a variably moving medium. Inclusion of realistic atmospheric ray tracing has removed the need for the simplifying assumption of an isotropic atmosphere or an approximation to account for “wind drift.” This “drift” is on the order of several km when strong, unidirectional winds are present in the atmosphere at the time of a fireball's occurrence. SUPRACENTER‐derived locations of three seismically recorded fireballs: 1) the October 9, 1997 El Paso superbolide; 2) the January 25, 1989 Mt. Adams fireball; and 3) the May 6, 2000 Morávka fireball (with its associated meteorite fall), are consistent with (and, probably, an improvement upon) the locations derived from eyewitness, photographic, and video observations from the respective individual events. If direct acoustic seismic arrivals can be quickly identified for a fireball event, terminal burst locations (and, potentially, trajectory geometry and velocity information) can be quickly derived, aiding any meteorite recovery efforts during the early days after the fall. Potentially, seismic records may yield enough trajectory information to assist in the derivation of orbits for entering projectiles.  相似文献   

17.
A new meteroid stream—October Ursa Majorids—was announced by Japanese observers on Oct. 14–16, 2006 (Uehara et al. 2006). Its weak manifestation was detected among coincidental major meteor showers (N/S Taurids, Orionids), as its meteors radiated from a higher placed radiant on the northern sky. We have tried to find out previous displays of the stream throughout available meteor orbits databases, and among ancient celestial phenomena records. Although we got no obvious identification, there are some indications that it could be a meteor shower of cometary origin with weak/irregular activity, mostly overlayed by regular coincidental meteor showers. With a procedure based on D-criterion (Southworth and Hawkins 1963) we found a few records in IAU MDC database of meteor photographic orbits which fulfill common similarity limits, for October Ursae Majorids. However, their real association cannot be established, yet. With respect to the mean orbit of this stream, we suggest for its parent body a long-period comet.  相似文献   

18.
Abstract— The Omolon meteorite fell on 1981 May 15 at 17:10 U.T. to a point with the coordinates φ = 64°01′08″ N, λ = 161°48′30″ E. This is the fifth pallasite that was observed at the moment of its fall and the largest of the pallasites known worldwide (250 kg). The history of the observation, search, and finding of the meteorite is briefly described. From the size of the meteorite and the funnel that it produced, the velocity of its encounter with the ground is estimated by aerodynamic formulas to be 220 m/s. An attempt at estimating the meteorite's initial velocity and mass from its terminal values (which yielded the mass range of 390–490 kg that corresponds to the velocity range of 12–15 km/s) was successful for the mass but unsuccessful for the velocity and the incidence angle, because the problem was ill posed. The position of the radiant is determined from the available observations to be α = 176.4°, δ = +24.1° (Leo). The radiant was situated at an elongation of 29° from the antapex, which means that this was an overtaking meteorite and its entry velocity did not exceed 16 km/s. Three variants of the calculation of the orbital elements—for an entry velocity of 12, 14, and 16 km/s—are presented. In all the three cases, the meteoroid's orbit is close to the orbits of Apollo asteroids and to the orbits of iron meteoroids observed as fireballs with bright iron lines in their spectra. The Omolon meteorite was probably a fragment of an Apollo M-type asteroid. This study is the first attempt at calculating the orbit of a pallasite.  相似文献   

19.
Results of the analysis of 3261 radar meteor head echoes observed during the Orionid and Lyrid periods by the high-power radar of the Springhill Meteor Observatory are given. Dependence of the occurence of head echoes on the geometrical factors and physical properties of the meteoroids has been studied. Increas of the head echo rates with the elevation of the shower radiant and with the velocity of meteoroids has been observed.  相似文献   

20.
Using the CMOR system, a search was conducted through 2.5 years (more than 1.5 million orbits) of archived data for meteoroids having unbound hyperbolic orbits around the Sun. Making use of the fact that each echo has an individually measured error, we were able to apply a cut-off for heliocentric speeds both more than two, and three standard deviations above the parabolic limit as our main selection criterion. CMOR has a minimum detectable particle radius near 100 μm for interstellar meteoroids. While these sizes are much larger than reported by the radar detections of extrasolar meteoroids by AMOR or Arecibo, the interstellar meteoroid population at these sizes would be of great astrophysical interest as such particles are more likely to remain unperturbed by external forces found in the interstellar medium, and thus, more likely to be traceable to their original source regions. It was found that a lower limit of approximately 0.0008% of the echoes (for the 3σ case) were of possible interstellar origin. For our effective limiting mass of 1×10−8 kg, this represents a flux of meteoroids arriving at the Earth of 6×10−6 meteoroids/km2/h. For our 2σ results, the lower limit was 0.003%, with a flux of 2×10−5 meteoroids/km2/h. The total number of events was too low to be statistically meaningful in determining any temporal or directional variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号