首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Geological surveys, tephrostratigraphic study, and 40Ar/39Ar age determinations have allowed us to chronologically constrain the geological evolution of the lower NW flank of Etna volcano and to reconstruct the eruptive style of the Mt Barca flank eruption. This peripheral sector of the Mt Etna edifice, corresponding to the upper Simeto valley, was invaded by the Ellittico volcano lava flows between 41 and 29 ka ago when the Mt Barca eruption occurred. The vent of this flank eruption is located at about 15 km away from the summit craters, close to the town of Bronte. The Mt Barca eruption was characterized by a vigorous explosive activity that produced pyroclastic deposits dispersed eastward and minor effusive activity with the emission of a 1.1-km-long lava flow. Explosive activity was characterized by a phreatomagmatic phase followed by a magmatic one. The geological setting of this peripheral sector of the volcano favors the interaction between the rising magma and the shallow groundwater hosted in the volcanic pile resting on the impermeable sedimentary basement. This process produced phreatomagmatic activity in the first phase of the eruption, forming a pyroclastic fall deposit made of high-density, poorly vesicular scoria lapilli and lithic clasts. Conversely, during the second phase, a typical strombolian fall deposit formed. In terms of hazard assessment, the possible occurrence of this type of highly explosive flank eruption, at lower elevation in the densely inhabited areas, increases the volcanic risk in the Etnean region and widens the already known hazard scenario.  相似文献   

2.
The evolution of the Colima volcanic complex can be divided into successive periods characterized by different dynamic and magmatic processes: emission of andesitic to dacitic lava flows, acid-ash and pumice-flow deposits, fallback nuées ardentes leading to pyroclastic flows with heterogeneous magma, plinian air-fall deposits, scoriae cones of alkaline and calc-alkaline nature. Four caldera-forming events, resulting either from major ignimbrite outbursts or Mount St. Helens-type eruptions, separate the main stages of development of the complex from the building of an ancient shield volcano (25 × 30 km wide) up to two summit cones, Nevado and Fuego.The oldest caldera, C1 (7–8 km wide), related to the pouring out of dacitic ash flows, marks the transition between two periods of activity in the primitive edifice called Nevado I: the first one, which is at least 0.6 m.y. old, was mainly andesitic and effusive, whereas the second one was characterized by extrusion of domes and related pyroclastic products. A small summit caldera, C2 (3–3.5 km wide), ended the evolution of Nevado I.Two modern volcanoes then began to grow. The building of the Nevado II started about 200,000 y. ago. It settled into the C2 caldera and partially overflowed it. The other volcano, here called Paleofuego, was progressively built on the southern side of the former Nevado I. Some of its flows are 50,000 y. old, but the age of its first outbursts is not known. However, it is younger than Nevado II. These two modern volcanoes had similar evolutions. Each of them was affected by a huge Mount St. Helens-type (or Bezymianny-type) event, 10,000 y. ago for the Paleofuego, and hardly older for the Nevado II. The landslides were responsible for two horseshoe-shaped avalanche calderas, C3 (Nevado) and C4 (Paleofuego), each 4–5 km wide, opening towards the east and the south. In both cases, the activity following these events was highly explosive and produced thick air-fall deposits around the summit craters.The Nevado III, formed by thick andesitic flows, is located close to the southwestern rim of the C3 caldera. It was a small and short-lived cone. Volcan de Fuego, located at the center of the C4 caldera, is nearly 1500 m high. Its activity is characterized by an alternation of long stages of growth by flows and short destructive episodes related to violent outbursts producing pyroclastic flows with heterogeneous magma and plinian air falls.The evolution of the primitive volcano followed a similar pattern leading to formation of C1 and then C2. The analogy between the evolutions of the two modern volcanoes (Nevado II–III; Paleofuego-Fuego) is described. Their vicinity and their contemporaneous growth pose the problem of the existence of a single reservoir, or two independent magmatic chambers, after the evolution of a common structure represented by the primitive volcano.  相似文献   

3.
The history of volcan Popocatepetl can be divided into two main periods: the formation of a large primitive volcano — approximatively 30 km wide — on which is superimposed a modern cone (6–8 km in diameter and 1700m high). A major event of Bezymianny type marks the transition between these two dissimilar periods.The activity of the primitive volcano was essentially effusive and lasted several hundred thousands of years. The total volume of products ejected by the volcano is of the order of 500–600 km3. Its last differentiated magmas are dacitic.A gigantic debris flow (D.F.) spread on the southern side is related to the Bezymianny-type event which destroyed the summit area of the ancient edifice. An elliptical caldera ( 6.5 × 11 km wide) was formed by the landslide. Its deposits, with a typical hummocky surface, cover 300 km2 for a volume of 28–30 km3. Numerous outcrops belonging to this debris flow show “slabs” of more or less fractured and dislocated rocks that come from the primitive volcano. These deposits are compared to two studied debris flows of similar extent and volume: the Mount Shasta and Colima's D.F.This eruption takes a major place in the volcanologic and magmatic history of Popocatepetl: pyroclastic products of surge-type with “laminites” and crude layers, ashflows, and pumiceous airfall layers are directly related to this event and begin the history of the modern volcano probably less than 50,000 years ago. In addition, a second andesitic and dacitic phase rose both from the central vent — forming the basis of modern Popo — and from lateral vents.The terminal cone is characterized by long periods of construction by lava flows alternating with phases of destruction, the duration of these episodes being 1000 to 2000 years. The cone is composed of two edifices: the first, volcan El Fraile, began with effusive activity and was partly destroyed by three periods of intense explosive activity. The first period occurred prior to 10.000 years B.P., the second from 10.000 to 8000 years B.P. and the third from 5000 to 3800 years B.P. Each period of destruction shows cycles producing collapsing pyroclastic flows or nuées of the St Vincent-type related to the opening of large craters, plinian air-fall deposits and minor lava flows. The second edifice, the summit Popo, produced lava flows until 1200 years B.P. and since that time, entered into an explosive period. Two cataclysmic episodes, each including major pyroclastic eruptions, occurred 1200 and 900–1000 years ago. During the Pre-Hispanic and historic times effusive activity was restricted entirely to the summit area alternating with plinian eruptions. Nevertheless, despite the quiet appearance of the volcano, the last period of pyroclastic activity which started 1200 years ago may not have ended and can be very dangerous for the nearby populations.  相似文献   

4.
The volcano-stratigraphic and geochronologic data presented in this work show that the Tenerife central zone has been occupied during the last 3 Ma by shield or central composite volcanoes which reached more than 3000 m in height. The last volcanic system, the presently active Teide-Pico Viejo Complex began to form approximately 150 ka ago. The first Cañadas Edifice (CE) volcanic activity took place between about 3.5 Ma and 2.7 Ma. The CE-I is formed mainly by basalts, trachybasalts and trachytes. The remains of this phase outcrop in the Cañadas Wall (CW) sectors of La Angostura (3.5–3.0 Ma and 3.0–2.7 Ma), Boca de Tauce (3.0 Ma), and in the bottom of some external radial ravines (3.5 Ma). The position of its main emission center was located in the central part of the CC. The volcano could have reached 3000 m in height. This edifice underwent a partial destruction by failure and flank collapse, forming debris-avalanches during the 2.6–2.3 Ma period. The debris-avalanche deposits can be seen in the most distal zones in the N flank of the CE-I (Tigaiga Breccia). A new volcanic phase, whose deposits overlie the remains of CE-I and the former debris-avalanche deposits, constituted a new volcanic edifice, the CE-II. The dyke directions analysis and the morphological reconstruction suggest that the CE-II center was situated somewhat westward of the CE-I, reaching some 3200 m in height. The CE-II formations are well exposed on the CW, especially at the El Cedro (2.3–2.00 Ma) sector. They are also frequent in the S flank of the edifice (2.25–1.89 Ma) in Tejina (2.5–1.87 Ma) as well as in the Tigaiga massif to the N (2.23 Ma). During the last periods of activity of CE-II, important explosive eruptions took place forming ignimbrites, pyroclastic flows, and fall deposits of trachytic composition. Their ages vary between 1.5 and 1.6 Ma (Adeje ignimbrites, to the W). In the CW, the Upper Ucanca phonolitic Unit (1.4 Ma) could be the last main episode of the CE-II. Afterwards, the Cañadas III phase began. It is well represented in the CW sectors of Tigaiga (1.1 Ma–0.27 Ma), Las Pilas (1.03 Ma–0.78 Ma), Diego Hernández (0.54 Ma–0.17 Ma) and Guajara (1.1 Ma–0.7 Ma). The materials of this edifice are also found in the SE flank. These materials are trachybasaltic lava-flows and abundant phonolitic lava and pyroclastic flows (0.6 Ma–0.5 Ma) associated with abundant plinian falls. The CE-III was essentially built between 0.9 and 0.2 Ma, a period when the volcanic activity was also intense in the ‘Dorsal Edifice' situated in the easterly wing of Tenerife. The so called ‘valleys' of La Orotava and Güimar, transversals to the ridge axis, also formed during this period. In the central part of Tenerife, the CE-III completed its evolution with an explosive deposit resting on the top of the CE, for which ages from 0.173 to 0.13 Ma have been obtained. The CC age must be younger due to the fact that the present caldera scarp cuts these deposits. On the controversial origin of the CC (central vertical collapse vs. repeated flank failure and lateral collapse of mature volcanic edifices), the data discussed in this paper favor the second hypothesis. Clearly several debris-avalanche type events exist in the history of the volcano but most of the deposits are now under the sea. The caldera wall should represent the proximal scarps of the large slides whose intermediate scarps are covered by the more recent Teide-Pico Viejo volcanoes.  相似文献   

5.
Aoba is a basalt volcano situated in the northern part of a chain containing all the active volcanoes in the New Hebrides. The chain extends the length of the New Hebrides. Growing from a depth of 2,400 meters on the sea floor, the volcano probably emerged above sea level in the late Pliocene or early Pleistocene. The age of the oldest exposed rocks is unknown. Relatively fluid lavas with autobrecciated surfaces probably issued from tissures, initiating a shield-building stage as the volcano emerged. Airfall pyroclastics increase towards the top of these lavas and are overlain by agglomerates marking a more explosive episode. Activity continued with the effusion of picrite basalt, accompanied by spasms of ash emission that formed crystal tuff. Subsequently a more explosive episode produced agglomerate and tuff with occasional tongues of lava. The two oval summit calderas are apparently related to deep-seated subsidence. Lack of pumice deposits, and the basic nature of the magma suggest that the foundering of the calderas was a quiet event, possibly due to massive outpourings of lava at a lower level, although a substantial volume also erupted from the summit volcanoes at this time. A broad pyroclastic cone, which was still growing 360 years ago, occupies the centre of the inner caldera. It is surmounted by a wide crater, or possibly small caldera, containing a lake in which palagonite tuff cones have formed. The western end of the inner caldera is occupied by an explosion crater, and the eastern end by a semicircular lake. A thermal area containing a solfatara on the southeast shore of the eastern lake, and staining in the crater lake suggestive of fumarole activity, are the only evidence of vulcanicity at the present time. It is difficult to correlate events at the centre of the volcano with those at the lateral fissures. Later episodes at the centre are probably broadly contemporaneous with activity along the fissures, the inner ends of which are mantled by younger deposits of the central volcano. Accumulation of material about this axial fiissure system, marked by no less than 64 cruptive foci, mainly spatter cones, and phreatic explosion craters where they intersect the coast, has extended the island to the northeast and southwest, producing the present oval shape. Numerous flows spilled from these fissures, the last reaching the sea at N’dui N’dui only 300 years ago according to local legend. Abundant ash was emitted from both the summit calderas and flank fissures at a late stage, forming a tuff mantle with layers of accretionary lapilli. The last volcanic event was the formation of a lahar which destoyed a village on the northeast slope of the volcano about 100 years ago. No consistent variation with time is evident in the composition of the magma, although plagiophyric and aphyric lava erupted during the later stages. All the rocks are basaltic, and differ only in the presence or absence of phenocryst-forming minerals, and the proportions in which they occur. Picrite basalt and ankaramite erupted from the central volcano and flank fissures, respectively.  相似文献   

6.
 Akutan Volcano is one of the most active volcanoes in the Aleutian arc, but until recently little was known about its history and eruptive character. Following a brief but sustained period of intense seismic activity in March 1996, the Alaska Volcano Observatory began investigating the geology of the volcano and evaluating potential volcanic hazards that could affect residents of Akutan Island. During these studies new information was obtained about the Holocene eruptive history of the volcano on the basis of stratigraphic studies of volcaniclastic deposits and radiocarbon dating of associated buried soils and peat. A black, scoria-bearing, lapilli tephra, informally named the "Akutan tephra," is up to 2 m thick and is found over most of the island, primarily east of the volcano summit. Six radiocarbon ages on the humic fraction of soil A-horizons beneath the tephra indicate that the Akutan tephra was erupted approximately 1611 years B.P. At several locations the Akutan tephra is within a conformable stratigraphic sequence of pyroclastic-flow and lahar deposits that are all part of the same eruptive sequence. The thickness, widespread distribution, and conformable stratigraphic association with overlying pyroclastic-flow and lahar deposits indicate that the Akutan tephra likely records a major eruption of Akutan Volcano that may have formed the present summit caldera. Noncohesive lahar and pyroclastic-flow deposits that predate the Akutan tephra occur in the major valleys that head on the volcano and are evidence for six to eight earlier Holocene eruptions. These eruptions were strombolian to subplinian events that generated limited amounts of tephra and small pyroclastic flows that extended only a few kilometers from the vent. The pyroclastic flows melted snow and ice on the volcano flanks and formed lahars that traveled several kilometers down broad, formerly glaciated valleys, reaching the coast as thin, watery, hyperconcentrated flows or water floods. Slightly cohesive lahars in Hot Springs valley and Long valley could have formed from minor flank collapses of hydrothermally altered volcanic bedrock. These lahars may be unrelated to eruptive activity. Received: 31 August 1998 / Accepted: 30 January 1999  相似文献   

7.
This structural study shows that the Piton de la Fournaise volcano was built over four periods separated by 3 calderas. Each stage, dated by K/Ar and CI4 data, and characterized by its own stratigraphy, intrusive system and collapses, is analysed in detail. The stratigraphical study shows lithological and petrological units within some of these stages. The lavas of Piton de la Fournaise are alkaline basalts ranging in composition from picrite to hawaiite. The feeder dikes systems are radial and converging to the volcanic paleocenters of each period. However, the majority of intrusions and surface cones are concentrated along rifts named « Reunion type » because of there wideness. The uplift of magma in these rift zones causes displacement and sumpling of the unsupported seaward flank of the volcano. Collapse structures with variable diameter, formed at different phases of the volcano history. Some are compared to calderas in relation to an intermediate magma chamber, others seem to be due to the bulge and strecht of the massif. The 3 calderas of great size (8–15 km) separating each stage are related to a lower and larger magmatic chamber. This geological study of Fournaise leads us to purpose an evolutive pattern of the volcano based on paleogeographical and paleostructural reconstitutions. The first Fournaise was built over a rift trending N 120 of the old neighbouring volcano of Piton des Neiges. The activity of this rift progressively decreased all through time with the development of a curved intrusive system where most eruptions took place. As in the Hawaiian rifts, the influence of gravitational stresses is invoked to explain the migration of the intrusive zones.  相似文献   

8.
Roccamonfina, part of the Roman Potassic Volcanic Province, is an example of a composite volcano with a complex history of caldera development. The main caldera truncates a cone constructed predominantly of this caldera may have been associated with one of the ignimbritic eruptions of the Brown Leucitic Tuff (BLT) around 385 000 yr BP. The Campagnola Tuff, the youngest ignimbrite of the BLT, however, drapes the caldera margin and must postdate at least the initial stages of collapse. During the subsequent history of the caldera there were several major explosive eruptions. The largest of these was that of the Galluccio Tuff at about 300 000 yr BP. It is likely that there was further collapse within the main caldera associated with these eruptions. It is of note that despite these subsequent major explosive eruptions later collapse occurred within the confines of the main caldera. Between eruptions caldera lakes developed producing numerous lacustrine beds within the caldera fill. Extensive phases of phreatomagmatic activity generated thick sequences of pyroclastic surge and fall deposits. Activity within the main caldera ended with the growth of a large complex of basaltic trachyandestite lava domes around 150 000 yr BP. Early in the history of Roccamonfina sector collapse on the northern flank of the volcano formed the northern caldera. One of the youngest major events on Roccamonfina occurred at the head of this northern caldera with explosive activity producing the Conca Ignimbrite and associated caldera. There is no evidence that there was any linkage in the plumbing systems that fed eruptions in the main and northern calderas.  相似文献   

9.
Apoyo caldera, near Granada, Nicaragua, was formed by two phases of collapse following explosive eruptions of dacite pumice about 23,000 yr B.P. The caldera sits atop an older volcanic center consisting of lava flows, domes, and ignimbrite (ash-flow tuff). The earliest lavas erupted were compositionally homogeneous basalt flows, which were later intruded by small andesite and dacite flows along a well defined set of N—S-trending regional faults. Collapse of the roof of the magma chamber occurred along near-vertical ring faults during two widely separated eruptions. Field evidence suggests that the climactic eruption sequence opened with a powerful plinian blast, followed by eruption column collapse, which generated a complex sequence of pyroclastic surge and ignimbrite deposits and initiated caldera collapse. A period of quiescence was marked by the eruption of scoria-bearing tuff from the nearby Masaya caldera and the development of a soil horizon. Violent plinian eruptions then resumed from a vent located within the caldera. A second phase of caldera collapse followed, accompanied by the effusion of late-stage andesitic lavas, indicating the presence of an underlying zoned magma chamber. Detailed isopach and isopleth maps of the plinian deposits indicate moderate to great column heights and muzzle velocities compared to other eruptions of similar volume. Mapping of the Apoyo airfall and ignimbrite deposits gives a volume of 17.2 km3 within the 1-mm isopach. Crystal concentration studies show that the true erupted volume was 30.5 km3 (10.7 km3 Dense Rock Equivalent), approximately the volume necessary to fill the caldera. A vent area located in the northeast quadrant of the present caldera lake is deduced for all the silicic pyroclastic eruptions. This vent area is controlled by N—S-trending precaldera faults related to left-lateral motion along the adjacent volcanic segment break. Fractional crystallization of calc-alkaline basaltic magma was the primary differentiation process which led to the intermediate to silicic products erupted at Apoyo. Prior to caldera collapse, highly atypical tholeiitic magmas resembling low-K, high-Ca oceanic ridge basalts were erupted along tension faults peripheral to the magma chamber. The injection of tholeiitic magmas may have contributed to the paroxysmal caldera-forming eruptions.  相似文献   

10.
Two extensive marine tephra layers recovered by piston coring in the western equatorial Atlantic and eastern Caribbean have been correlated by electron microprobe analyses of glass shards and mineral phases to the Pleistocene Roseau tuff on Dominica in the Lesser Antilles arc. Tephra deposition and transport to the deep sea was primarily controlled by two processes related to two different styles of eruptive activity: a plinian airfall phase and a pyroclastic flow phase. A plinian phase produced a relatively thin (1–8 cm) airfall ash layer in the western Atlantic, covering an area of 3.0 × 105 km2 with a volume of 13 km3 (tephra). The majority of the airfall tephra was transported by antitrade winds at altitudes of 6–17 km. Aeolian fractionation of crystals and glass occurred during transport resulting in an airfall deposit enriched in crystals relative to the source. Mass balance calculation based on crystal/glass fractionation indicates an additional 12 km3 of airfall tephra was deposited outside the observed fall-out envelope as dispersed ash.Discharge of pyroclastic flows into the sea along the west coast of Dominica initiated subaqueous pyroclastic debris flows which descended the steep western submarine flanks of the island. 30 km3 of tephra were deposited by this process on the floor of the Grenada Basin up to 250 km from source. The Roseau event represents the largest explosive eruption in the Lesser Antilles in the last 200,000 years and illustrates the complexity of primary volcanogenic sedimentation associated with a major explosive eruption within an island arc environment.  相似文献   

11.
 The ca. 10,500 years B.P. eruptions at Ruapehu volcano deposited 0.2–0.3 km3 of tephra on the flanks of Ruapehu and the surrounding ring plain and generated the only known pyroclastic flows from this volcano in the late Quaternary. Evidence of the eruptions is recorded in the stratigraphy of the volcanic ring plain and cone, where pyroclastic flow deposits and several lithologically similar tephra deposits are identified. These deposits are grouped into the newly defined Taurewa Formation and two members, Okupata Member (tephra-fall deposits) and Pourahu Member (pyroclastic flow deposits). These eruptions identify a brief (<ca. 2000-year) but explosive period of volcanism at Ruapehu, which we define as the Taurewa Eruptive Episode. This Episode represents the largest event within Ruapehu's ca. 22,500-year eruptive history and also marks its culmination in activity ca. 10,000 years B.P. Following this episode, Ruapehu volcano entered a ca. 8000-year period of relative quiescence. We propose that the episode began with the eruption of small-volume pyroclastic flows triggered by a magma-mingling event. Flows from this event travelled down valleys east and west of Ruapehu onto the upper volcanic ring plain, where their distal remnants are preserved. The genesis of these deposits is inferred from the remanent magnetisation of pumice and lithic clasts. We envisage contemporaneous eruption and emplacement of distal pumice-rich tephras and proximal welded tuff deposits. The potential for generation of pyroclastic flows during plinian eruptions at Ruapehu has not been previously considered in hazard assessments at this volcano. Recognition of these events in the volcanological record is thus an important new factor in future risk assessments and mitigation of volcanic risk at Tongariro Volcanic Centre. Received: 5 July 1998 / Accepted: 12 March 1999  相似文献   

12.
Volcan Pico de Orizaba, which marks the eastern end of the Trans-Mexican Volcanic Belt, is one of the largest andesitic composite volcanoes in America. It is located above a series of crustal distensive faults making the boundary of the Coast Plains of the Gulf of Mexico from theAltiplano. For this reason, the volcano shows an asymmetry: from the west, its elevation is about 3,000 m whereas on the eastern side it reaches 4,000 to 4,500 m from its base. The Pico de Orizaba is composed of a primitive stratovolcano raised by a recent summit cone. It has been built by three very distinct volcanic and magmatic phases.
  1. The first one, probably discontinuous effusive activity, lasted more than one million years. It is mainly composed of two pyroxenes-andesites with scarce associated basaltic and dacitic lava-flows. Amphibole is an accessory mineral in most differentiated lavas. On the eastern flank, numerous massive and autobrecciated lava-flows pass outward into thick conglomeratic formations. This effusive phase has built a primitive central volcano and a parasitic cone: the Sierra Negra.
  2. The second phase is of short duration — about 100,000 years or less — in comparison with the first period. It seems that this period began with the formation of a caldera followed by the extrusion of amphibole dacite domes and the overflow of viscous silica-rich (andesite to dacite) lava flows on the northern flank. An intense explosive activity develops:pelean nuées ardentes are associated with extrusion of the domes; numerous plinian eruptions leading to widespread dacitic pumiceous air-falls are produced by both the central and the adventive volcanoes. This sequence of events is interpreted as the progressive emptying of a superficial chamber containing differenciated magma. A rhyolite flow erupted during this phase.
  3. The age of the recent phase is better defined. It started 13,000 years B.P. with the eruption of a dacitic ash-flow containing pumice and scoria-bombs. This was such an intense event that products were found 30 km S.E. of the summit, erasing the top of the former volcano and creating a large crater (4–5 km wide). The present cone, of 1,400–1,500 m elevation, grew in this crater. During a period of 7,000 to 8,000 years, the new stratovolcano experienced various important pyroclastic eruptions with a cycle of the order of 1,000 to 1,500 years. The pyroclastic flows (ash, pumice, and bombs) associated with air-fall deposits are of Saint-Vincent type. They present an heterogeneous dacitic and andesitic magma. The dacitic component is similar to previous differenciated materials. On the other hand, the andesitic magma appears somewhat similar to lava-flows from morphologically young cones erupted outside the central vent system. This eruptive cycle can be interpreted as the result of reoccurring injections of deep basic magma within the crustal chamber. For the last 5,000 years the activity of the modern Pico de Orizaba has again been essentially effusive (andesites) with periodic plinian eruptions.
  相似文献   

13.
Plinian eruptions are amongst the most powerful of explosive volcanic events, and the extensive pumice deposits which they produce have an exceptionally wide dispersal because of the great eruptive plume height. Historical data on 12 plinian eruptions, and available quantitative data on the deposits of these and 37 other plinian eruptions are collated in this review to characterise further the plinian eruptive style and its products and to establish the known limits of their variation. The deposit volumes have been recomputed according to a standard procedure to provide a better basis for comparison, and they vary over 4 orders of magnitude to reach a maximum of about 100 km3. Almost all volcanic magma compositions apart from the most mafic are represented among the juvenile products; rhyolitic and dacitic deposits account for 80% of the total volume and basaltic ones less than 1%. Compositional zoning is very common. Plinian eruptions are of open vent type and produce deposits which tend to be homogeneous in grain size and constitution through their thickness. Considerable departures from homogeneity often however exist. Finer grained beds which often interrupt the continuity can be produced by a number of different mechanisms, the features of which are summarised. In a significant proportion of plinian deposits the finer beds are the deposits of intraplinian pyroclastic flows, or are related to such flows; pyroclastic flows such as may be attributable to column collapse thus do not form exclusively at the end of the plinian phase. The most recent work indicates that major phreatoplinian eruptions dominated by the copious inflow of water into the vent can produce deposits quite as widely dispersed and as voluminous as the biggest plinian eruptions, and it appears that the characteristics of the grain size populations of the two types tend to converge in the most powerful eruptions.  相似文献   

14.
A new Klyuchevskoy volcano eruptive cycle encompasses terminal (March 30, 1972 to August 23, 1974) and lateral (August 23, 1974 to December, 1974) eruption stages. The terminal eruption stage resulted in lava flows and parasitic cones that formed on the south-western flank of the volcano. Eruption products are moderately alkalic high-alumina olivine-bearing andesite-basalts. The terminal eruption stage was accompanied by volcanic earthquakes and volcanic tremor. The lateral eruption was accompanied by explosive earthquakes. Volcanic tremor was the most useful prognostic sign indicating the onset of the lateral eruption. Eruptive mechanisms are discussed.  相似文献   

15.
The May 22, 1915 eruptions of Lassen Peak involved a volcanic blast and the emplacement of three geographically and temporally distinct lahar deposits. The volcanic blast occurred when a Vulcanian explosion at the summit unroofed a shallow magma source, generating an eruption cloud that rose to an estimated height of 9 km above sea level. The blast cloud was probably caused by the collapse of a small portion of the eruption column; absence of a flank vent associated with these eruptions argues against it originating as an explosion that has been directed by vent geometry or location. The volcanic blast devasted 7 km2 of the northeast flank of the volcano, and emplaced a deposit of juvenile tephra and accidental lithic and mineral fragments. Decrease in blast deposit thickness and median grain size with increasing distance from the vent suggests that the blast cloud lost transport competence as it crossed the devastated area. Scanning electron microscope examination of pyroclasts from the blast deposit indicates that the blast cloud was a dry, turbulent suspension that emplaced a thin deposit which cooled rapidly after deposition. Lahar deposits were emplaced primarily in Lost Creek, with minor lahars flowing down gullies on the west, northwest and north flanks of the volcano. The initial lahar was apparently triggered early in the eruption when the blast cloud melted the residual snowpack as it moved down the northeast flank of the peak. The event that triggered the later lahars is enigmatic; the presence of approximately five times more juvenile dacite bombs on the surface of the later lahars suggests that they may have been triggered by a change in eruption style or dynamics.  相似文献   

16.
The first high-resolution bathymetric and backscatter maps of offshore Stromboli Island are presented, together with an interpretation of its volcanic, structural and sedimentary features. The volcanic edifice is characterized by a sub-conical shape with a quasi-bilateral symmetry with respect to a NE-SW axis. The dimensions of the Strombolicchio volcanic centre, to the NE of Stromboli, have been restored by redrawing its morphology before wave action that eroded it in Late Quaternary time. On the NE submarine flank of Strombolicchio, a N64°E structural trend controls the shape of Strombolicchio Canyon. On the southern side of Stromboli, the submarine flank has a radial structural trend, possibly reflecting a volcanic stress regime. Landslide scars at various scales are ubiquitous on the submarine slopes of Stromboli. Repeated large-scale lateral collapses have affected both the northwestern and southeastern unbuttressed flanks of the volcano, producing large debris avalanche deposits.  相似文献   

17.
The mass distribution and sorting of tephra produced in the plinian phase of the 1970 Hekla eruption was controlled by the particle size distribution, the height of the eruption column, and velocity of transport. Near the volcano the mass distribution of soluble fluorine was controlled by particle size of the deposits, but approaches the mass distribution of the tephra at longer distances. Adsorbed soluble fluorine reaches a maximum at a distance from the volcano determined by the velocity of the transporting medium.SEM studies show the soluble fluorine to be chemically adsorbed on the surface of tephra particles. The adsorption is shown by experiment to occur at temperatures below 600°C in the cooling eruption column. Evaluation of reactions in the eruption column leads to the conclusion that formation of water soluble compounds adhering to tephra is principally controlled by environmental factors and to a lesser degree by the composition of the volcanic gas phase.  相似文献   

18.
Six years after the 1991 Mt. Pinatubo eruption, deep erosion incisions into the pyroclastic deposits accumulated around the volcano enabled us to investigate the stratigraphy of the climactic deposits both in valley bottoms and on contiguous ridges. Stratigraphic relationships between fall, flow, and surge deposits in the Marella drainage system indicate that during the climactic eruption a progressive shift occurred from an early convective regime, to a transitional regime feeding both the plinian convective column and mostly dilute density currents, to a fully collapsing regime producing mostly dense pyroclastic flows. Syn-plinian dilute density currents (surges) propagated up to ~10 km from the crater, both along valley bottoms and on contiguous ridges of the Marella Valley, whereas post-plinian pyroclastic flows had greater runout (~13 km), were confined to valleys and were not associated with significant surges. Stratigraphic study and grain-size analyses allow the identification of three types of intra-plinian deposits: (a) lower and often coarse-grained surge deposits, emplaced during the accumulation of the coarsest portion of the fallout bed at time intervals of ~16-24 min; (b) upper fine-grained surge deposits, interstratified with the fine-grained portion of the fall bed and emplaced at shorter time intervals of ~3-13 min; and (c) small-volume, channel-confined, massive pumiceous flow deposits interbedded with the upper surges in the upper fine-grained fall bed. Maximum clast size isopleths of 1.6 and 0.8 cm for lithics (ML) and 2.0 and 4.0 cm for pumices (MP) show almost symmetrical distribution around the vent, indicating that the passing of the typhoon Yunya during the climactic eruption had little effect on trajectories of high-Reynold-number clasts. Significant distortion was, however, observed for the 3.2-cm ML and 6.0-cm MP proximal isopleths, whose patterns were probably influenced by the interaction of the clasts falling from column margins with the uprising co-ignimbrite ash plumes. Application of the Carey and Sparks (1986) model to the undisturbed isopleths generated by the umbrella cloud yields a maximum column height of ~42 km, in good agreement with satellite measurements. Systematic stratigraphic and vertical grain-size studies of the plinian fall deposit in the Marella Valley, combined with satellite data and eyewitness accounts, reveal that the carrying capacity of the convective column and related fallout activity peaked in the early phase of the eruption, beginning slightly before 13:41 and gradually declined until its cessation 3 h later. Most of the pumiceous pyroclastic flow deposits were emplaced after the end of the fallout activity at ~16:30 but before the summit caldera collapse at approximately 19:11. Only a small volume of pumiceous flow deposits accumulated after the final caldera collapse. In contrast to the previous reconstruction of Holasek et al. (1996), which interpreted the progressive lowering of the column, documented by satellite data, as due to a decreasing mass eruption rate, we suggest that a progressive shift from a plinian column to a large co-ignimbrite column could also account for such a variation.  相似文献   

19.
Western Anatolia, largely affected by extensional tectonics, witnessed widespread volcanic activity since the Early Miocene. The volcanic vents of the region are represented by epicontinental calderas, stratovolcanoes and monogenetic vents which are associated with small-scale intrusions as sills and dykes. The volcanic activity began with an explosive character producing a large ignimbritic plateau all over the region, indicating the initiation of the crustal extension event. These rhyolitic magmas are nearly contemporaneous with granitic intrusions in western Anatolia. The ignimbrites, emplaced approximately contemporaneous with alluvial fan and braided river deposits, flowed over the basement rocks prior to extensional basin formation. The lacustrine deposits overlie the ignimbrites. The potassic and ultrapotassic lavas with lamprophyric affinities were emplaced during the Late Miocene–Pliocene. The volcanic activities have continued with alkali basalts during the Quaternary.  相似文献   

20.
The eruption of 1631 A.D. was the most violent and destructive event in the recent history of Vesuvius. More than fifty primary documents, written in either Italian or Latin, were critically examined, with preference given to the authors who eyewitnessed volcanic phenomena. The eruption started at 7 a.m. on December 16 with the formation of an eruptive column and was followed by block and lapilli fallout east and northeast of the volcano until 6 p.m. of the same day. At 10 a.m. on December 17, several nuées ardentes were observed to issue from the central crater, rapidly descending the flanks of the cone and devastating the villages at the foot of Vesuvius. In the night between the 16th and 17th and on the afternoon of the 17th, extensive lahars and floods, resulting from rainstorms, struck the radial valleys of the volcano as well as the plain north and northeast.Deposits of the eruption were identified in about 70 localities on top of an ubiquitous paleosol formed during a long preeruptive volcanic quiescence. The main tephra unit consists of a plinian fallout composed of moderately vesicular dark green lapilli, crystals and lithics. Isopachs of the fallout are elongated eastwards and permit a conservative volume calculation of 0.07 km3. The peak mass flux deduced from clast dispersal models is estimated in the range 3–6 × 107 kg/s, corresponding to a column height of 17–21 km. East of the volcano the plinian fallout is overlain by ash-rich low-grade ignimbrite, surges, phreatomagmatic ashes and mud flows. Ash flows occur in paleovalleys around the cone of Vesuvius but are lacking on the Somma side, suggesting that pyroclastic flows had not enough energy to overpass the caldera wall of Mt. Somma. Deposits are generally unconsolidated, massive with virtually no ground layer and occasionally bearing sparse rests of charred vegetation. Past interpretations of the products emitted on the morning of December 17 as lava flows are inconsistent with both field observations and historical data. Features of the final phreatomagmatic ashes are suggestive of alternating episodes of wet ash fallout and rainfalls. Lahars interfingered with primary ash fallout confirm episodes of massive remobilization of loose tephra by heavy rainfalls during the final stage of the eruption.Chemical analyses of scoria clasts suggest tapping of magma from a compositionally zoned reservoir. Leucite-bearing, tephritic-phonolite (SiO2 51.17%) erupted in the early plinian phase was in fact followed by darker and slightly more mafic magma richer in crystals (SiO2 49.36%). During the nuées ardentes phase the composition returned to that of the early phase of the eruption.The reconstruction of the 1631 eruptive scenario supplies new perspectives on the hazards related to plinian eruptions of Vesuvius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号